501 research outputs found

    A comparison of healthy human and swine articular cartilage dynamic indentation mechanics

    Get PDF
    Articular cartilage is a multicomponent, poroviscoelastic tissue with nonlinear mechanical properties vital to its function. A consequent goal of repair or replacement of injured cartilage is to achieve mechanical properties in the repair tissue similar to healthy native cartilage. Since fresh healthy human articular cartilage (HC) is not readily available, we tested whether swine cartilage (SC) could serve as a suitable substitute for mechanical comparisons. To a first approximation, cartilage tissue and surgical substitutes can be evaluated mechanically as viscoelastic materials. Stiffness measurements (dynamic modulus, loss angle) are vital to function and are also a non-destructive means of evaluation. Since viscoelastic material stiffness is strongly strain rate dependent, stiffness was tested under different loading conditions related to function. Stiffness of healthy HC and SC specimens was determined and compared using two non-destructive, mm-scale indentation test modes: fast impact and slow sinusoidal deformation. Deformation resistance (dynamic modulus) and energy handling (loss angle) were determined. For equivalent anatomic locations, there was no difference in dynamic modulus. However, the HC loss angle was ~35% lower in fast impact and ~12% higher in slow sinusoidal mode. Differences seem attributable to age (young SC, older HC) but also to species anatomy and biology. Test mode-related differences in human-swine loss angle support use of multiple function-related test modes. Keeping loss angle differences in mind, swine specimens could serve as a standard of comparison for mechanical evaluation of e.g. engineered cartilage or synthetic repair material

    Modelling Vector Transmission and Epidemiology of Co-Infecting Plant Viruses.

    Get PDF
    Co-infection of plant hosts by two or more viruses is common in agricultural crops and natural plant communities. A variety of models have been used to investigate the dynamics of co-infection which track only the disease status of infected and co-infected plants, and which do not explicitly track the density of inoculative vectors. Much less attention has been paid to the role of vector transmission in co-infection, that is, acquisition and inoculation and their synergistic and antagonistic interactions. In this investigation, a general epidemiological model is formulated for one vector species and one plant species with potential co-infection in the host plant by two viruses. The basic reproduction number provides conditions for successful invasion of a single virus. We derive a new invasion threshold which provides conditions for successful invasion of a second virus. These two thresholds highlight some key epidemiological parameters important in vector transmission. To illustrate the flexibility of our model, we examine numerically two special cases of viral invasion. In the first case, one virus species depends on an autonomous virus for its successful transmission and in the second case, both viruses are unable to invade alone but can co-infect the host plant when prevalence is high

    Emergency revascularization in patients with cardiogenic shock on admission: a report from the SHOCK trial and registry

    Get PDF
    Aims To determine clinical correlates and optimal treatment strategy in patients with cardiogenic shock (CS) on admission. Methods and results In SHould we emergently revascularize Occluded Coronaries in cardiogenic shocK? (SHOCK) trial and registry patients with left ventricular (LV) dysfunction (n=1053), CS on admission occurred in 26% of directly admitted patients (n=166/627). Time from myocardial infarction to CS was shorter, initial haemodynamic profile poorer, and aggressive treatment less frequent in CS on admission than in delayed CS patients. CS on admission patients constituted a smaller relative proportion (11%) of the transferred (n=48/426) when compared with the directly admitted cohort (P<0.001). In-hospital mortality was higher (75 vs. 56%; P<0.001) with more rapid death (24-h mortality 40 vs. 17%; P<0.001) in CS on admission than in delayed CS patients. Emergency revascularization reduced in-hospital mortality in CS on admission (60 vs. 82%; P=0.001) and in delayed CS patients similarly (46 vs. 62%; P<0.001; interaction P=0.25). After adjustment for clinical differences, CS on admission was an independent predictor of in-hospital mortality (P=0.008). Conclusion CS on admission patients have a worse outcome but benefit equally from emergency revascularization as delayed CS patients, emphasizing the need for rapid and direct access of CS on admission patients to facilities providing this car

    Understanding disease control: influence of epidemiological and economic factors

    Get PDF
    We present a local spread model of disease transmission on a regular network and compare different control options ranging from treating the whole population to local control in a well-defined neighborhood of an infectious individual. Comparison is based on a total cost of epidemic, including cost of palliative treatment of ill individuals and preventive cost aimed at vaccination or culling of susceptible individuals. Disease is characterized by pre- symptomatic phase which makes detection and control difficult. Three general strategies emerge, global preventive treatment, local treatment within a neighborhood of certain size and only palliative treatment with no prevention. The choice between the strategies depends on relative costs of palliative and preventive treatment. The details of the local strategy and in particular the size of the optimal treatment neighborhood weakly depends on disease infectivity but strongly depends on other epidemiological factors. The required extend of prevention is proportional to the size of the infection neighborhood, but this relationship depends on time till detection and time till treatment in a non-nonlinear (power) law. In addition, we show that the optimal size of control neighborhood is highly sensitive to the relative cost, particularly for inefficient detection and control application. These results have important consequences for design of prevention strategies aiming at emerging diseases for which parameters are not known in advance

    Coinfections by noninteracting pathogens are not independent and require new tests of interaction.

    Get PDF
    If pathogen species, strains, or clones do not interact, intuition suggests the proportion of coinfected hosts should be the product of the individual prevalences. Independence consequently underpins the wide range of methods for detecting pathogen interactions from cross-sectional survey data. However, the very simplest of epidemiological models challenge the underlying assumption of statistical independence. Even if pathogens do not interact, death of coinfected hosts causes net prevalences of individual pathogens to decrease simultaneously. The induced positive correlation between prevalences means the proportion of coinfected hosts is expected to be higher than multiplication would suggest. By modelling the dynamics of multiple noninteracting pathogens causing chronic infections, we develop a pair of novel tests of interaction that properly account for nonindependence between pathogens causing lifelong infection. Our tests allow us to reinterpret data from previous studies including pathogens of humans, plants, and animals. Our work demonstrates how methods to identify interactions between pathogens can be updated using simple epidemic models

    Prediction of migratory routes of the invasive fall armyworm in eastern China using a trajectory analytical approach

    Get PDF
    This is the author accepted manuscript. The final version is available from Wiley via the DOI in this record BACKGROUND: The fall armyworm (FAW), an invasive pest from the Americas, is rapidly spreading through the Old World, and has recently invaded the Indochinese Peninsula and southern China. In the Americas, FAW migrates from winter-breeding areas in the south into summer-breeding areas throughout North America where it is a major pest of corn. Asian populations are also likely to evolve migrations into the corn-producing regions of eastern China, where they will pose a serious threat to food security. RESULTS: To evaluate the invasion risk in eastern China, the rate of expansion and future migratory range was modelled by a trajectory simulation approach, combined with flight behavior and meteorological data. Our results predict that FAW will migrate from its new year-round breeding regions into the two main corn-producing regions of eastern China (Huang-Huai-Hai Summer Corn and Northeast Spring Corn Regions), via two pathways. The western pathway originates in Myanmar and Yunnan, and FAW will take four migration steps (i.e. four generations) to reach the Huang-Huai-Hai Region by July. Migration along the eastern pathway from Indochina and southern China progresses faster, with FAW reaching the Huang-Huai-Hai Region in three steps by June and reaching the Northeast Spring Region in July. CONCLUSION: Our results indicate that there is a high risk that FAW will invade the major corn-producing areas of eastern China via two migration pathways, and cause significant impacts to agricultural productivity. Information on migration pathways and timings can be used to inform integrated pest management strategies for this emerging pest.Biotechnology & Biological Sciences Research Council (BBSRC)CABI Bioscienc

    Impacts of climate change on plant diseases – opinions and trends

    Get PDF
    There has been a remarkable scientific output on the topic of how climate change is likely to affect plant diseases in the coming decades. This review addresses the need for review of this burgeoning literature by summarizing opinions of previous reviews and trends in recent studies on the impacts of climate change on plant health. Sudden Oak Death is used as an introductory case study: Californian forests could become even more susceptible to this emerging plant disease, if spring precipitations will be accompanied by warmer temperatures, although climate shifts may also affect the current synchronicity between host cambium activity and pathogen colonization rate. A summary of observed and predicted climate changes, as well as of direct effects of climate change on pathosystems, is provided. Prediction and management of climate change effects on plant health are complicated by indirect effects and the interactions with global change drivers. Uncertainty in models of plant disease development under climate change calls for a diversity of management strategies, from more participatory approaches to interdisciplinary science. Involvement of stakeholders and scientists from outside plant pathology shows the importance of trade-offs, for example in the land-sharing vs. sparing debate. Further research is needed on climate change and plant health in mountain, boreal, Mediterranean and tropical regions, with multiple climate change factors and scenarios (including our responses to it, e.g. the assisted migration of plants), in relation to endophytes, viruses and mycorrhiza, using long-term and large-scale datasets and considering various plant disease control methods

    Treatment solutions to cure Xylella fastidiosa diseased plants

    Get PDF
    This opinion addresses the question of the efficacy of current treatment solutions to cure Xylella fastidiosa diseased plants, and discusses the experimental treatments under evaluation by two research groups in Apulian olive orchards infected by strain CoDiRO (Complesso del Disseccamento Rapido dell'Olivo). The increasing problems from newly emerging vascular bacterial diseases and the limited success to cure plants from such infections have stimulated numerous studies on treatments with chemical and biological compounds. Under field conditions, various formulations of copper and zinc as spray or root drench are currently used while further options, for example the application of bioactive substances, are at an experimental stage. In Apulia, preliminary results from intensive treatments with such formulations, in combination with the use of good crop management practices, reported more vigorous new growth of diseased trees. However, results provided so far confirmed the continued presence of X. fastidiosa after the treatments under evaluation. This is in agreement with current knowledge that there are no means to cure plants from this bacterial disease, in the sense of eliminating the pathogen from plant tissues. The reported positive response of the treated olive trees is most probably due to the effect of micronutrients and other bioactive compounds that, together with soil cultivation and agronomical practices, improve the vigour of the plants and their resilience to stress caused by bacterial infections. Notwithstanding the preliminary status of these findings, the Panel acknowledged the potentially positive effects of such treatments in prolonging the productive phase of olive trees and their putative relevance for the management of olive orchards, particularly in the containment area where eradication of the pathogen is considered no longer possible. The Panel also concluded that long-term studies are needed to confirm that the reported positive effects on crop performance can be sustained over many years
    corecore