73 research outputs found

    TRISTAN: Electromagnetic, gravimetric and seismic measurements to investigate the Tristan da Cunha hot spot and its role in the opening of the South-Atlantic - Cruise No. MSM20/2, January 17 - February 15, 2012, Walvis Bay (Namibia) – Recife (Brazil)

    Get PDF
    According to classical plume theory, the Tristan da Cunha hotspot is thought to have played a major role in the rifting of the South Atlantic margins and the creation of the aseismic Walvis Ridge by impinging at the base of the continental lithosphere shortly before or during the breakup of the South Atlantic margins. But Tristan da Cunha is enigmatic, as it cannot be clearly identified as a hot-spot but classifies also highly as a more shallow type of anomaly that may actually have been caused by the opening of the South Atlantic. The equivocal character of Tristan is largely due to lack of geophysical data in this region. To understand the tectonic processes of the opening of the South Atlantic, the formation of the Walvis ridge and to understand whether Tristan da Cunha is the cause or the consequence of rifting, it is of central importance to characterize the region around Tristan da Cunha in a more coherent way. Within this research cruise we deployed 26 ocean bottom electromagnetic stations (OEBM) and 24 ocean bottom seismometer (OBS) for a long term acquisition (1 year) of magnetotelluric and seismological data, acquired bathymetry and gravity data and performed geological sampling on Tristan da Cunha. The data will be interpreted in the context of geochemical data and tectonic models developed within the SPP1375‚ South Atlantic Margin Processes and Links with onshore Evolution (SAMPLE)

    Milankovitch frequencies in tephra records at volcanic arcs: The relation of kyr-scale cyclic variations in volcanism to global climate changes

    Get PDF
    Highlights The increase in volcanic activity after the last glacial maximum observed on Iceland has led to one of the most fascinating hypothesis in science in the last decades: that deglaciation may force volcanism. We: - Re-analyzed four longer tephra records with the same statistical method and demonstrated that all contain the ∟41 kyr and ∟100 kyr Millankovitch periodicities. - The frequency spectra of the tephra and δ18O records are significantly correlated supporting the hypothesis that orbital-driven global climate changes interact with the volcanic eruption frequency regionally and globally. - However, the simultaneous analysis of the four best-characterized tephra records shows that correlations and associated time lags suffer from a number of uncertainties including the nature and quality of tephra time series, a wide range in geographic latitudes and geological settings, as well as applied statistical methods Therefore more precise tephra time series (preservation and age optimized) from different regions (glaciated versus non-glaciated) and geological settings (island arcs, continental arcs, intraplate) are needed together with standardized statistical analysis to decipher the impact of these factors on a global perspective of how climate may control volcanism. Abstract The increase in volcanic activity after the last glacial maximum observed on Iceland has led to one of the most fascinating hypothesis in science in the last decades: that deglaciation may force volcanism. Consequently, tephrostratigraphic records of sufficient length that cover multiple glacial cycles have been used to test whether such relationships hold systematically through the Quaternary. Here we review such tephra records that have been linked with climate proxy records such as δ18O in marine sediments, which is a measure of sea-level change and which is thought to be orbitally forced, as it exhibits the characteristic Milankovitch periodicities of precession (∟23 kyr), obliquity (∟41 kyr) and eccentricity (∟100 kyr). Statistical analyses have identified these periodicities also in long tephra records from different latitudes and geotectonic settings, as well as in compiled semi-global records. These studies detect Milankovitch periods in their tephra record, and also a phase shift relative to the δ18O record in such that periods of increased eruption frequencies coincide with the deglaciation period at the glacial/interglacial transition when ice and water loads on the lithosphere change most rapidly. However, there are also disparities in results and interpretations, which may be attributable to the different methods of analysis applied by the studies. We have therefore re-analyzed the four best-characterized tephra records by the same methods. We distinguish between analysis in the frequency domain, a novel approach, and analysis in the time domain, which has been used in previous studies. Analysis in the frequency domain identifies harmonic frequencies that arise from the binary nature of the tephra records and complicate the identification of primary frequencies. However, we show that all four records show spectral density peaks near the main Milankovitch periodicities of 41 and 100 kyr, and that they produce meaningful and significant statistical correlations with each other and the global δ18O record but not with random time series. Although the time-domain correlations with δ18O roughly confirm phase shifts implying peak volcanism during deglaciation, correlation coefficients arising from very noisy records are generally too low for precise constraints on the relative timing. These deficiencies presently hamper the recognition of the physical mechanisms through which global climate changes affect volcanism at both, high-latitude glaciated regions and low-latitude non-glaciated regions

    100- kyr cyclicity in volcanic ash emplacement: evidence from a 1.1 Myr tephra record from the NW Pacific

    Get PDF
    It is a longstanding observation that the frequency of volcanism periodically changes at times of global climate change. The existence of causal links between volcanism and Earth's climate remains highly controversial, partly because most related studies only cover one glacial cycle. Longer records are available from marine sediment profiles in which the distribution of tephras records frequency changes of explosive arc volcanism with high resolution and time precision. Here we show that tephras of IODP Hole U1437B (northwest Pacific) record a cyclicity of explosive volcanism within the last 1.1 Myr. A spectral analysis of the dataset yields a statistically significant spectral peak at the similar to 100 kyr period, which dominates the global climate cycles since the Middle Pleistocene. A time-domain analysis of the entire eruption and delta O-18 record of benthic foraminifera as climate/sea level proxy shows that volcanism peaks after the glacial maximum and similar to 13 +/- 2 kyr before the delta O-18 minimum right at the glacial/interglacial transition. The correlation is especially good for the last 0.7 Myr. For the period 0.7-1.1 Ma, during the Middle Pleistocene Transition (MPT), the correlation is weaker, since the 100 kyr periodicity in the delta O-18 record diminishes, while the tephra record maintains its strong 100 kyr periodicity

    Crustal constraint through complete model space screening for diverse geophysical datasets facilitated by emulation

    Get PDF
    Deep crustal constraint is often carried out using deterministic inverse methods, sometimes using seismic refraction, gravity and electromagnetic datasets in a complementary or “joint” scheme. With increasingly powerful parallel computer systems it is now possible to apply joint inversion schemes to derive an optimum model from diverse input data. These methods are highly effective where the uncertainty in the system is small. However, given the complex nature of these schemes it is often difficult to discern the uniqueness of the output model given the noise in the data, and the application of necessary regularization and weighting in the inversion process means that the extent of user prejudice pertaining to the final result may be unclear. We can rigorously address the subject of uncertainty using standard statistical tools but these methods also become less feasible if the prior model space is large or the forward simulations are computationally expensive. We present a simple Monte Carlo scheme to screen model space in a fully joint fashion, in which we replace the forward simulation with a fast and uncertainty-calibrated mathematical function, or emulator. This emulator is used as a proxy to run the very large number of models necessary to fully explore the plausible model space. We develop the method using a simple synthetic dataset then demonstrate its use on a joint data set comprising first-arrival seismic refraction, MT and scalar gravity data over a diapiric salt body. This study demonstrates both the value of a forward Monte Carlo approach (as distinct from a search-based or conventional inverse approach) in incorporating all kinds of uncertainty in the modelling process, exploring the entire model space, and shows the potential value of applying emulator technology throughout geophysics. Though the target here is relatively shallow, the methodology can be readily extended to address the whole crust

    100- kyr cyclicity in volcanic ash emplacement: evidence from a 1.1 Myr tephra record from the NW Pacific

    Get PDF
    It is a longstanding observation that the frequency of volcanism periodically changes at times of global climate change. The existence of causal links between volcanism and Earth’s climate remains highly controversial, partly because most related studies only cover one glacial cycle. Longer records are available from marine sediment profiles in which the distribution of tephras records frequency changes of explosive arc volcanism with high resolution and time precision. Here we show that tephras of IODP Hole U1437B (northwest Pacific) record a cyclicity of explosive volcanism within the last 1.1 Myr. A spectral analysis of the dataset yields a statistically significant spectral peak at the ~100 kyr period, which dominates the global climate cycles since the Middle Pleistocene. A time-domain analysis of the entire eruption and δ18O record of benthic foraminifera as climate/sea level proxy shows that volcanism peaks after the glacial maximum and ∼13 ± 2 kyr before the δ18O minimum right at the glacial/interglacial transition. The correlation is especially good for the last 0.7 Myr. For the period 0.7–1.1 Ma, during the Middle Pleistocene Transition (MPT), the correlation is weaker, since the 100 kyr periodicity in the δ18O record diminishes, while the tephra record maintains its strong 100 kyr periodicity

    On mapping seafloor mineral deposits with central loop transient electromagnetics

    Get PDF
    Electromagnetic methods are commonly employed in exploration for land-based mineral deposits. A suite of airborne, land, and borehole electromagnetic techniques consisting of different coil and dipole configurations have been developed over the last few decades for this purpose. In contrast, although the commercial value of marine mineral deposits has been recognized for decades, the development of suitable marine electromagnetic methods for mineral exploration at sea is still in its infancy. One particularly interesting electromagnetic method, which could be used to image a mineral deposit on the ocean floor, is the central loop configuration. Central loop systems consist of concentric transmitting and receiving loops of wire. While these types of systems are frequently used in land-based or airborne surveys, to our knowledge neither system has been used for marine mineral exploration. The advantages of using central loop systems at sea are twofold: (1) simplified navigation, because the transmitter and receiver are concentric, and (2) simplified operation because only one compact unit must be deployed. We produced layered seafloor type curves for two particular types of central loop methods: the in-loop and coincident loop configurations. In particular, we consider models inspired by real marine mineral exploration scenarios consisting of overburdens 0 to 5 m thick overlying a conductive ore body 5 to 30 m thick. Modeling and resolution analyses showed that, using a 50 m(2) transmitting loop with 20 A of current, these two configurations are useful tools to determine the overburden depth to a conductive ore deposit and its thickness. In the most extreme case, absolute voltage errors on the order of 10 nV are required to resolve the base of a 30 m thick ore deposit. Whether such noise floors can be achieved in real marine environments remains to be seen

    Structure of the mantle beneath the Alboran Basin from Magnetotelluric Soundings

    Get PDF
    We present results of marine MT acquisition in the Alboran sea that also incorporates previously acquired land MT from southern Spain into our analysis. The marine data show complex MT response functions with strong distortion due to seafloor topography and the coastline, but inclusion of high resolution topography and bathymetry and a seismically defined sediment unit into a 3‐D inversion model has allowed us to image the structure in the underlying mantle. The resulting resistivity model is broadly consistent with a geodynamic scenario that includes subduction of an eastward trending plate beneath Gibraltar, which plunges nearly vertically beneath the Alboran. Our model contains three primary features of interest: a resistive body beneath the central Alboran, which extends to a depth of ∼150 km. At this depth, the mantle resistivity decreases to values of ∼100 Ohm‐m, slightly higher than those seen in typical asthenosphere at the same depth. This transition suggests a change in slab properties with depth, perhaps reflecting a change in the nature of the seafloor subducted in the past. Two conductive features in our model suggest the presence of fluids released by the subducting slab or a small amount of partial melt in the upper mantle (or both). Of these, the one in the center of the Alboran basin, in the uppermost‐mantle (20-30 km depth) beneath Neogene volcanics and west of the termination of the Nekkor Fault, is consistent with geochemical models, which infer highly thinned lithosphere and shallow melting in order to explain the petrology of seafloor volcanics

    Structure of the mantle beneath the Alboran basin from magnetotelluric soundings

    Get PDF
    We present results of marine MT acquisition in the Alboran sea that also incorporates previously acquired land MT from southern Spain into our analysis. The marine data show complex MT response functions with strong distortion due to seafloor topography and the coastline, but inclusion of high resolution topography and bathymetry and a seismically defined sediment unit into a 3D inversion model has allowed us to image the structure in the underlying mantle. The resulting resistivity model is broadly consistent with a geodynamic scenario that includes subduction of an eastward trending plate beneath Gibraltar, which plunges nearly vertically beneath the Alboran. Our model contains three primary features of interest: a resistive body beneath the central Alboran, which extends to a depth of ~150 km. At this depth, the mantle resistivity decreases to values of ~100 Ohm-m, slightly higher than those seen in typical asthenosphere at the same depth. This transition suggests a change in slab properties with depth, perhaps reflecting a change in the nature of the seafloor subducted in the past. Two conductive features in our model suggest the presence of fluids released by the subducting slab or a small amount of partial melt in the upper mantle (or both). Of these, the one in the center of the Alboran basin, in the uppermost-mantle (20-30km depth) beneath Neogene volcanics and west of the termination of the Nekkor Fault, is consistent with geochemical models, which infer highly thinned lithosphere and shallow melting in order to explain the petrology of seafloor volcanics

    Deep electrical resistivity structure of northwestern Costa Rica

    Get PDF
    First long-period magnetotelluric investigations were conducted in early 2008 in northwestern Costa Rica, along a profile that extends from the coast of the Pacific Ocean, traverses the volcanic arc and ends currently at the Nicaraguan border. The aim of this study is to gain insight into the electrical resistivity structure and thus fluid distribution at the continental margin where the Cocos plate subducts beneath the Caribbean plate. Preliminary two-dimensional models map the only moderately resistive mafic/ultramafic complexes of the Nicoya Peninsula (resistivity of a few hundred Ίm), the conductive forearc and the backarc basins (several Ίm). Beneath the backarc basin the data image a poor conductor in the basement with a clear termination in the south, which may tentatively be interpreted as the Santa Elena Suture. The volcanic arc shows no pronounced anomaly at depth, but a moderate conductor underlies the backarc with a possible connection to the upper mantle. A conductor at deep-crustal levels in the forearc may reflect fluid release from the downgoing slab
    • …
    corecore