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Abstract

Deep crustal constraint is often carried out using deterministic inverse meth-

ods, sometimes using seismic refraction, gravity and electromagnetic datasets

in a complementary or “joint” scheme. With increasingly powerful parallel

computer systems it is now possible to apply joint inversion schemes to de-

rive an optimum model from diverse input data. These methods are highly

effective where the uncertainty in the system is small. However, given the

complex nature of these schemes it is often difficult to discern the uniqueness

of the output model given the noise in the data, and the application of nec-

essary regularization and weighting in the inversion process means that the

extent of user prejudice pertaining to the final result may be unclear. We can

rigorously address the subject of uncertainty using standard statistical tools

but these methods also become less feasible if the prior model space is large or

the forward simulations are computationally expensive. We present a simple

Monte Carlo scheme to screen model space in a fully joint fashion, in which we

replace the forward simulation with a fast and uncertainty-calibrated math-
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ematical function, or emulator. This emulator is used as a proxy to run the

very large number of models necessary to fully explore the plausible model

space. We develop the method using a simple synthetic dataset then demon-

strate its use on a joint data set comprising first-arrival seismic refraction,

MT and scalar gravity data over a diapiric salt body. This study demon-

strates both the value of a forward Monte Carlo approach (as distinct from

a search-based or conventional inverse approach) in incorporating all kinds

of uncertainty in the modelling process, exploring the entire model space,

and shows the potential value of applying emulator technology throughout

geophysics. Though the target here is relatively shallow, the methodology

can be readily extended to address the whole crust.

Keywords: Bayesian, statistical methods, emulation, joint inversion, salt

diapir, crustal imaging

1. Introduction1

1.1. Methodological background2

A widely used approach for determining deep crustal structure is to use a3

deterministic non-linear inverse method (Zelt and Barton, 1998; Hole et al.,4

2006; Roberts et al., 2009). A forward simulator code is used to compute syn-5

thetic data and by seeking to minimise an objective function, which normally6

includes residuals with respect to an observed dataset and some regulariza-7

tion and smoothing terms, an update to the model is computed. This is8

repeated iteratively until an acceptable value of data misfit, normally mea-9

sured by the χ2 parameter, is obtained. Where several kinds of data have10

been recorded at the same location (e.g. seismic refraction, seismic reflection,11
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gravity, electromagnetic) these may all be used together to constrain a com-12

mon model across various physical parameters; seismic velocity, density, re-13

sistivity, where the parameters are coupled by some relationship (Moorkamp14

et al., 2011). The deterministic inverse approach works well when there is15

clear justification for the use of a particular regularization and smoothing16

regime and a good prior understanding about the region of model space of17

where the optimum model is to be found (i.e. the user can be confident that18

the process will find the global minimum in the objective function, rather19

than merely a local minimum). In a joint setting the method also works20

well where there is no uncertainty regarding the parameter coupling. How-21

ever, often such clarity and certainty is not possible, but in order to obtain22

a result, overly subjective assertions are made about the degree of regular-23

ization, smoothing, coupling, and data uncertainty. In such cases, there is24

the strong possibility that unquantified user bias may influence the result.25

So while linearised inversion methods are best suited to obtaining a single26

optimum result, they do not facilitate a rigorous treatment of the uncertainty27

associated with a system. In general it is the case that rather than a single28

optimum model, because of various kinds of uncertainties associated with the29

system, many structures could give rise to the observed data. Understanding30

not just an optimum model, but the whole plausible model set, along with31

a clear understanding of the prior beliefs we are imposing on the constraint32

process, is important for making inference about the deep crust.33

In recent decades, with computational development, and the importance34

of more fully treating the uncertainty associated with geophysical results, sta-35

tistical determination schemes are increasingly being used to constrain earth36
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structure. The most widely known and used methodology is that of the37

Markov Chain Monte Carlo (MCMC) method, where a point in model space38

is chosen and parameters updated according to some sampling scheme, such39

as that of Metropolis-Hastings-Gibbs (Hastings, 1970; Smith and Roberts,40

1993), in order to maximise the likelihood function. However, although re-41

cent computational advances have made it possible to handle larger problems,42

it is still the case that these methods are still really only practicable when the43

number of model parameters and the size of the model space is comparatively44

small (Sambridge and Mosegaard, 2002). This is because if the number of45

parameters is large (commonly > 105), the number of (complex and there-46

fore time-expensive) forward simulations required to sample the model space47

and properly build up the posterior probability density functions becomes48

infeasible, although parallel computing methods are beginning to mitigate49

this to an extent.50

Prior to the development of MCMC methods, authors such as Press51

(1970) developed conceptually straightforward Monte Carlo methods based52

on the simple sampling of model space. However, these methods were quickly53

sidelined in favor of the more targeted sampling strategies of MCMC-related54

methods, on account of computational efficiency. In this study, we re-adopt55

the conceptually straightforward approach, of seeking to sample the entire56

model space, but instead of using the full forward simulator codes, we use57

emulators to rapidly sample the model space and screen it for plausibility.58

This differs significantly from the search-based MCMC or deterministic in-59

version methods in that rather than trying to “build up” the plausible model60

space or search for an optimum model, here the aim is to start with the61
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entire prior model space and to exclude implausible regions. The result is62

therefore guaranteed to include all potentially plausible model space, given63

all uncertainties specified as being relevant to the problem at hand.64

1.2. What is an emulator?65

An emulator is a fast statistical representation of a forward modelling66

code. By training the emulator with a number of runs of the full simula-67

tor code, the emulator seeks to predict the output of the full simulator to68

a calibrated uncertainty, using a number of simple (in our case polynomial)69

functions. Emulators are widely used e.g. climate modelling (Rougier et al.,70

2009), ocean modelling (Logemann et al. , 2004), and cosmological appli-71

cations (Vernon and Goldstein, 2009). In many cases, their use is crucial72

to the ability to effectively model the system concerned since the systems73

are so complex that to run a full simulation of a system such as the earth’s74

atmosphere, ocean, or the universe, would be infeasible on the grounds of75

insufficient computational capacity, even with recent technological advances.76

These emulator-based methods have provided considerable insight into the77

systems concerned through making the modelling process tractable. In this78

study we use the emulator to screen model space in order to discern all regions79

containing models representing earth structures which could have given rise80

to the observed data, given the specified uncertainties in data measurements,81

physical relationships and any others which the user may wish to specify.82

In a number of ways an emulator is similar to a neural network, in that83

through a process of learning the relationship between model parameters and84

the data outputs, it seeks to give a rapid prediction of the output of a com-85

plex code for a given set of input model parameters. Neural networks have86
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been used in order to solve inverse problems in geophysics; for example Meier87

et al. (2007) use a neural network to invert shear wave data. However, an88

emulator differs from a conventional neural network in that the emulator is89

fully uncertainty-calibrated. Not only does the emulator give a rapid esti-90

mate of the complex forward code output, but it will also give a calibrated91

estimate of the uncertainty associated with that estimate. This uncertainty92

calibration makes it possible to use the emulator to test and accept/reject93

model space for plausibility. Simply having a prediction of the forward code94

output, without an uncertainty estimate would not allow robust screening of95

model space, simply because there would be no measure as to the reliability96

of the output estimates being tested. However, with a calibrated emulator,97

this problem is resolved. As with a conventional neural network, an emulator98

will typically run several orders of magnitude faster than the full simulator99

code, and so may be used to test and accept or reject large areas of model100

space very quickly. Other authors have also developed methods to quickly101

approximate the output of a full forward code in order to accelerate inverse102

methods; James and Ritzwoller (1999) use truncated perturbation expan-103

sions to approximate Rayleigh-Wave Eigenfrequencies and Eigenfunctions;104

and Shapiro and Ritzwoller (2002), who take a similar methodology to use in105

a MCMC scheme to construct a global shear-velocity model of the crust and106

upper mantle. In each of these cases the aim is to minimise some objective107

function or maximise a likelihood function.108

Having built an emulator, we generate sets of model parameters using109

a space-filling sampling design (latin hypercube), and test the emulator es-110

timates of the forward code output for the candidate model parameter-sets111
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against an observed dataset, in order to reject implausible regions of model112

space and thus constrain the region of plausible model space. After pop-113

ulating the plausible space, a new emulator can be built over this smaller114

region, with smaller predictive uncertainty. This new emulator can then be115

used to further reject implausible model space. We repeat this cyclically116

until no further emulator uncertainty reduction achieved, at which point all117

structure has been discerned in the system. An advantage of this kind of118

approach, which relies entirely on forward modelling, is that it is conceptu-119

ally straightforward to include any kind of uncertainty or prior belief about120

the model space. This may include data uncertainty, inter-parameter rela-121

tionship uncertainty, model discrepancy (uncertainty due to the fact that no122

model perfectly represents nature). The user simply generates models from123

a prior space with the required properties.124

We present a synthetic example using a 4-layer 1D model space over125

seismic velocity, density, and resistivity (16 parameters in total, including126

layer thickness). The resistivity, density and velocity parameters are linked127

by an uncertain physical relationship (based on Gardner et al. (1974); Jegen-128

Kulcsar et al. (2009)). Using a lab PC over a period of ∼72 hours, after129

an initial investment of 1000 model runs using the forward simulator code,130

we use 11 emulation cycles to screen 1
4
billion models over our large starting131

model space, and reduce it by a factor of 10−19. We then apply the method132

successfully to an industrial 3D dataset at selected locations.133

While the test case here is rather simple, and indeed it would be straight-134

forward to solve using a deterministic inversion method, or indeed sampling135

the model space using the full simulator, our aim here is to show the value136
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of a top-down and joint approach, where the entire possible model space is137

considered, and to present emulation as a potentially useful tool both for fa-138

cilitating this strategy and more widely in the field of geophysical constraint.139

Based on our experience and that of Meier et al. (2007) and others, we posit140

that emulation techniques have the potential to be used widely in the field141

of geophysics and more generally throughout the Earth Sciences.142

2. Methods143

The problem being presented is that of joint constraint of a synthetic 1D144

earth structure. We begin by briefly introducing the three different modelling145

techniques/domains being used for the study; seismic refraction, magneto-146

telluric (MT) and gravity and the function of the respective forward sim-147

ulators, before considering the prior model space and coupling relationship148

which we will sample in order to constrain the structure from the synthetic149

dataset.150

2.1. Seismic refraction technique151

The seismic modelling technique takes advantage of the fact that differing152

rock types possess differing velocities at which sound waves travel through153

them. By measuring the time which sound waves take to travel along different154

paths in the earth, one can gain information about this seismic velocity field,155

and thus make interpretative judgements about the geological structure in156

that region.157

A full treatment of the seismic method is given in Kennett (2001). In158

this study, we are considering energy which turns in the earth in a manner159

described by Snell’s law (Equation 1 and Figure 1), due to the presence of a160
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Figure 1: When sound waves encounter an impedance discontinuity, their path is altered.

Where the density is unchanged, the deflection is controlled by the velocity, as shown,

according to Snell’s law (Equation 1). In the limiting case of a velocity gradient (infinites-

simally thin layers of increasing velocity), the energy turns in the earth as shown in Figure

2.

velocity gradient, as in Figure 2. For our purposes, we are only considering161

energy which is NOT reflecting off some boundary/step change in impedance,162

ie. we are only considering energy which is travelling along paths akin to that163

of the blue ray in Figure 2. Note that in the scenario being described here,164

where we are using constant velocity model parameters, in order to create165

turning waves with the forward simulator, we add a small velocity gradient166

of 0.5%.167

v1sin(θ2) = v1sin(θ2) (1)

The forward simulator, which takes the input model and generates a set168

of output travel time data, is written by Björn Heincke (Heincke et al., 2006)169
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Rock A:
sound velocity vA

Rock B:
sound velocity vB Reflector

Figure 2: Rays showing the propagation path of sound waves through the earth. Sound

waves turn within a velocity gradient (eg. blue and green rays), and they can also reflect

from impedance contrasts (grey ray). Here we are considering only seismic energy turning

as shown by the blue and green rays, and are not considering reflected energy. Note that in

general sound waves have a frequency spectrum with finite width. Describing the process

in terms of rays is only strictly valid when considering an infinite frequency spectrum.

and is based on the Finite Element (FE) method described by Podvin and170

Lecomte (1991). One of the major advantages of using a FE method such as171

this is that, unlike with a ray-tracing approach, travel times are calculated172

for ALL receiver locations, rather than simply where the infinite frequency173

ray-tracing approach finds a ray-path. For our purposes, this means that174

problems associated with a potentially differing number of data points with175

each run of the simulator are avoided. For the 1D purpose at hand, this176

simulator may be considered rather more complex than necessary, and if the177

aim of this paper were to simply find an efficient solution to the 1D problem, a178

less complex and computationally intensive code would easily suffice. Indeed,179

as is commented elsewhere in this paper, an emulator is not strictly necessary180

to solve this class of problem. However, although we are using a simple earth181

model, our intention is to show as far as possible an emulator being built182

for a complex 3D simulator which may be used on a large dataset. The183
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work was also carried out contemporaneously with that of Moorkamp et al.184

(2011) with a view to exploring complementarity between the deterministic185

and stochastic methods. This complementarity is not the main focus of this186

paper, however in the context of the collaborative nature of the work, we187

decided to use a common set of simulator codes.188

The FE engine requires a gridded volume, and we chose to set this up with189

dimensions appropriate for a reasonably high resolution large 2D refraction190

seismic survey. The simulator was thus configured to use a 50,000 x 1,000 x 30,000 m191

volume with a 100 m grid spacing. Travel times were generated/‘recorded’192

every 500 m along the main axis of the model in a line colinear with the shot193

position (0 m, 500 m, 10 m). Note that the receiver and shot positions are194

slightly below the surface of the model, since placing these positions along195

model boundaries/nodes can cause simulator instability. Because in our ex-196

ample we use 1D layer-parameterized models, the model-input function of the197

simulator was modified so that it could read in a series of 4 velocity values198

and 4 layer thicknesses and use these values to generate the required for the199

simulator. With this parameterization 1,000 runs of the simulator typically200

took about 4.5 minutes. The output data for each run of the simulator are201

thus a set of 100 (offset, time) points.202

The output data from the simulator for a given model input are a series of203

travel times recorded at a number of offsets (in our case 100) from the receiver204

position. Note that this may seem a high density of traveltime points given205

the problem under consideration. However, in the context of demonstrating206

the use of the data reduction technique described in Section 2.7.1, and in207

order to present a data density closer to that seen in 3D datasets, we have208
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chosen to use a high traveltime density.209

2.2. MT technique210

The Magneto-Telluric (MT) method aims to probe the resistivity struc-211

ture of the Earth by measuring the terrestrial electric and magnetic fields212

at the Earth’s surface. Cagniard (1953) give a comprehensive description213

of the method. The key output parameter from an MT experiment is a214

measurement of the Earth’s complex impedance Z = Ex

Hy
over a range of215

electromagnetic frequencies. The raw output is normally in the form of216

R(ω) = Re(Z(ω)) and I(ω) = Im(Z(ω)), however this is normally plot-217

ted in terms of the transformed functions apparent resistivity r and phase ϕ,218

as defined in Equation 3.219

log10(rapp(ω)) = log10{(R(ω)2 + I(ω)2)/(2πµ010
ω)} (2)

ϕ(ω) =
180

π
arctan(I(ω)/R(ω)) (3)

Because the form of the R(ω) and I(ω) plots are much simpler in form220

than the apparent resistivity/phase plots, we choose to consider R and I, as221

shown in Figure 4.222

Our simulator, written by Avdeev et al. (2002), takes as inputs a list of223

resistivity r and layer thickness s values, along with a list of frequencies,224

and outputs a list of R and I values, evaluated at each of the values of225

ω. In our case, we have four layers (so, as with the seismic case, 8 model226

parameters), and we choose to evaluate the output functions R(ω) and I(ω)227

at 20 frequencies ω1−20. ω is in some sense a proxy for depth in the Earth,228

in that the MT signal at higher frequency gives information about the upper229
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structure and the signal at low frequency gives information about the deeper230

structure. We therefore choose a fairly wide frequency range, from log10(ω) =231

−6 to log10(ω) = 0.5. Because of this large frequency range, we emulate232

R(log(ω)) and I(log(ω)) as a function of the model parameters r1−4 and233

s1−4.234

2.3. Gravity technique235

This technique uses the fact that the fine-scale gravitational field is sen-236

sitive to density variations in the Earth. The gravitational field at a given237

point, a distance r from a point source of mass m is given by Equation 4.238

g = −∇ϕ = −Gm
r2

(4)

As with other inverse square law phenomena, we can apply Gauss’ the-239

orem (Equation 5) to obtain, in the 1D case, for our four-layer model, with240

θ⃗ = [ρ1−4, s1−4]
T , Equation 6.241

∫∫
g⃗ · dA⃗ = −4πG

∫∫∫
ρdV (5)

g =
4∑

i=1

 ρisi(∑i
j=1 sj

)2
 (6)

Our gravity simulator is extracted from the Full Tensor Gravity (FTG)242

inversion code by Moorkamp et al. (2011). In this 1D scalar setting, the243

simulator runs quickly. The output dataset, for a given θ⃗ in the 1D case,244

thus consists of a single point measurement.245
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Figure 3: Schematic diagram of the joint model, with parameter ranges and the values

used to produce the target dataset given in parentheses.

2.4. Model Space246

Before building an emulator to screen model space, the bounds of the247

model space over which the emulator is to be used, must first be specified.248

In defining the prior model space, it should be borne in mind that in order to249

build a reliable emulator, the emulator should be trained over a slightly larger250

space than is required for screening purposes. This is in order to ensure that251

the edges of the prior plausible parameter space are sufficiently sampled and252

that information from these regions is included in the emulator construction.253

The prior plausible parameter space used here is shown in Figure 3.254

2.5. The datasets255

The synthetic scenario we are considering is that we have seismic re-256

fraction traveltime data, complex impedance data from a MT survey, and257

a gravity measurement. The seismic and MT datasets, generated using the258

model parameter set shown in Figure 3, are shown in Figure 4.259
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In the case of the seismic data, the (x,t) curve is seen to consist of four260

“segments”, reflecting the fact that the synthetic model is parameterized by261

four constant velocity layers. The discontinuities in gradient contain struc-262

tural information on account of the fact that deeper-propagating seismic263

energy emerges at larger offsets. In a layered system, therefore, the posi-264

tions of these gradient discontinuities can be exploited to constrain the layer265

thicknesses. We exploit this in Section 2.7.2.266

The MT dataset consists of two curves showing Re(Z(ω)) and Im(Z(ω))267

varying with the driving frequency of the MT instrument. The electromag-268

netic skin depth is inversely proportional to
√
ω, and so lower frequency269

signals propagate further into the Earth.270

The gravity datum consists of a single synthetic measurement computed271

to be 78.73896 mgal. Note that the absolute value of this synthetic measure-272

ment should not be interpreted physically because the datum has not been273

specified. It has simply been computed using the densities and layer thick-274

nesses shown in Figure 3. In a real earth scenario, the measurement includes275

considerable contribution from the deeper earth, and so for the purposes of276

earth inference it is the value relative to a datum which is significant. In our277

case we will be generating candidate density models and computing gravity278

measurements to test against this synthetic value without any contribution279

from a half space below, so we are in effect using a zero reference datum. In280

the real data example presented later, we consider the gravity measurement281

over the salt relative to that over sediment (Section 3).282
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Figure 4: Synthetic datasets used for the study. Left: Refraction travel time data. Note

that the travel time curve consists of four distinct straight segments. This is due to the

model used to generate it consists of four constant velocity layers. Right: MT Complex

Impedance data. The black line/points show Re(Z(ω)) and the red line/points show

Im(Z(ω)). The data were generated by running the respective forward simulator codes

with the parenthesized model parameters shown in Figure 3.
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2.6. Relationship uncertainty283

At the heart of a joint constraint method is the coupling between the284

different kinds of model parameters. With the screening approach presented285

here, any kind of coupling can easily be implemented. Here we build three286

emulators; one for each of the seismic, gravity, and MT forward simulators.287

We choose to build each emulator independently of each of the other mod-288

elling domains so we do not need to invoke inter-parameter coupling in order289

to build each emulator. Then, having built an emulator for each modelling290

domain, we invoke the inter-parameter relationship with a specifed uncer-291

tainty to generate joint candidate models for screening, and the emulators292

are used to discern which of these joint models are commonly plausible in293

all three domains. It is not strictly necessary to specify such a physical rela-294

tionship or coupling scheme. However, in such a situation, the “joint” nature295

of the problem reduces to three independent modelling scenarios. Here we296

seek to jointly constrain density, resistivity and seismic velocity parameters297

for each of four layers (Figure 5).298

In practice, the relationships linking these parameters are normally de-299

rived empirically, by fitting a relationship to pre-existing borehole log data,300

for example. This means that the relationship between the parameters is301

uncertain. In linearised inversion schemes, using an uncertain physical rela-302

tionship can create significant conceptual and technical challenges, however303

because this method relies entirely on forward modelling, we can naturally304

include this uncertain relationship by using it to generate our distribution of305

candidate models at the screening stage.306

The coupling relationship shown in Figure 5 applies in a sub-basalt set-307
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Figure 5: Joint modelling setting.

ting, such as that characteristic of the North East Atlantic in the vicinity of308

the Faroe Islands. We chose this scenario as a test case because of the particu-309

lar value a joint approach can add to constraint of this kind of structure. The310

challenges associated with sub-basalt seismic imaging are well documented311

(Roberts et al., 2009, for example). Recent technological and methodological312

advances (Lunnon et al., 2003; Ziolkowski et al., 2001) have given rise to some313

improvements to intra- and sub-basalt seismic images. However, the typi-314

cally highly heterogeneous nature of basalt, which gives rise to significant315

scattering of the seismic wavefield, means that the fundamental challenge316

remains. Jegen-Kulcsar et al. (2009), among others, have demonstrated the317

value of joint inversion methods, by virtue of the complementary information318

provided by different kinds of data.319

2.7. Building the emulators320

Jegen-Kulcsar et al. (2009) showed the value of using MT and seismic321

datasets together to constrain a sub-basalt problem. Because of the normally322
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non-unique nature of seismic models in a sub-basalt context, a Bayesian323

approach such as this is particularly suited to be applied in this regime. We324

design each of our emulators in three stages. We first employ a data-reduction325

method. This is because, for example, in the seismic dataset, which consists326

of (offset, traveltime) data, the data points, particularly at large offsets are327

highly correlated. Having reduced the dataset, we then use a least-squares328

fitting routine in order to fit the output data from a series of training runs of329

the full simulator code to the model parameters in order to build a predictor.330

Simply having a predictor, however, is not very useful in practice, however,331

unless one has an estimate of the uncertainty of the predicted output. We332

therefore, thirdly, calibrate the uncertainty of the predictor by calibrating it333

against the output from the full simulator code for the training runs. The334

result (the emulator) is a framework with which the output of the full forward335

code can be predicted rapidly, with a calibrated uncertainty estimate. This336

can then be used to screen candidate model parameter sets for plausibility.337

2.7.1. Building a seismic emulator338

To construct an emulator, a batch of training runs using the full forward339

simulator code is required. The seismic simulator code used to train the340

emulator was that used by Heincke et al. (2006). We generate 1,000 sets341

of the 8 velocity model parameters (4 velocities and 4 layer thicknesses for342

each model) using a space-filling latin hypercube design over the model space343

shown in Figure 3. Each of these 1,000 models is then passed through the344

seismic simulator code, which generates a set of 100 (offset, traveltime) points345

for each set of model parameters. Because of the typically highly correlated346

nature of the (x, t) points, we then chose to re-represent each of these travel347
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time data curves as a set of pseis = 8 polynomial coefficients α1−pseis,seis. The348

value of pseis was determined by trial and error to obtain the optimum order349

of polynomial wiith which to fit the (x, t) curves. These coefficients, αi,seis,350

are generated by least-squares fitting each curve to the functional form shown351

in Equation 7. gseis(x) is an uncertainty function, which we calibrate later.352

log(t2) =

(
pseis∑
i=0

αi,seis

(
log(x2 + 1)

)i)
+ gseis(x) (7)

⃗θseis =
[
v1 v2 v3 v4 s1 s2 s3 s4

]T
(8)

αi,seis =

(
wseis∑
k=1

qseis∑
j=0

βijkθ
j
k,seis

)
+ gi,seis( ⃗θseis) (9)

Having re-represented the training datasets as sets of α1−8,seis, we seek353

to predict these coefficients for a given set of model parameters. We do this354

by fitting the αi to functions of the model parameters θseis,1−8 = (v1−4, s1−4),355

using coefficients βijk, as shown in Equations 8-9. The functions gi,seis( ⃗θseis)356

are uncertainty functions associated with the prediction of each αi,seis coeffi-357

cient, wseis is the number of model parameters being considered (8), and qseis358

is the number of βijk coefficients used to fit each αi coefficient (4). The value359

of qseis was determined by trial and error, by examining the optimum order360

of polynomial for reconstructing the αi,seis. Here we have chosen qseis to be361

the same for each αi, however this need not be the case in that it would be362

straightforward to use a different number of β coefficients for each i.363

In the coefficients βijk, we now have a means to predict the output of the364

simulator code for a given set of input model parameters θseis. Examples of365

the ability to predict or reconstruct the data using these βijk coefficients are366

shown in Figure 6.367
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Figure 6: Sample emulator output traveltime data plotted with the real travel times. Red

dots mark the real data points and the green lines represent the result of predicting the

travel times using the emulator with the relevant model parameters. Note that there is a

generally good reconstruction and much of the misfit which is present occurs where there

is a discontinuity in the travel time vs offset gradient function (in this case due to the fact

that the models consist of four constant velocity layers).
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However, simply having a prediction of the output of the forward code is368

of little value, unless one can also specify the uncertainty of the prediction.369

Our next step is therefore to calibrate the uncertainty of the predictor out-370

put. We do this by using our predictor to generate outputs for the training371

models and comparing these to the outputs obtained from the full simula-372

tor code through construction of a residual function, as shown in Figure 7.373

Note that the residual function we are constructing here is not simply ei-374

ther gseis(x) or gi,seis( ⃗θseis), as in Equations 7 and 9. Rather, it is given by375

Gx(x) (Equation 14 where n is the number of emulator training runs), which376

we use to approximate G(x, θseis) (Equations 12-13). Note that although in377

this example the traveltime plots themselves consist of four distinct segments378

(Figure 6) due to the use of constant velocity four layer models, the residual379

plots do not manifest these segments since over the set of 1000 models used380

to construct the residuals, different layer thicknesses are used, drawn from381

across the model space shown in Figure 3.382
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log(t2) =

pseis∑
i=0

((
wseis∑
k=1

qseis∑
j=0

βijkθ
j
k,seis

)
+ gi,seis( ⃗θseis)

(
log(x2 + 1)

)i)
+ gseis(x)

(10)

=

pseis∑
i=0

wseis∑
k=1

qseis∑
j=0

βijkθ
j
k,seis +

[
pseis∑
i=0

(
gi,seis( ⃗θseis)

(
log(x2 + 1)

)i)
+ gseis(x)

]
(11)

=

pseis∑
i=0

wseis∑
k=1

qseis∑
j=0

βijkθ
j
k,seis +G(x, ⃗θseis) (12)

≈
pseis∑
i=0

wseis∑
k=1

qseis∑
j=0

βijkθ
j
k,seis +Gx(x) (13)

Gx(x) =

√∑nmax

n=1 (tem,n(x)− tsim,n(x))
2

nmax

(14)

2.7.2. The seismic second derivative383

It can be seen from Figure 6 that the largest discrepancy between the384

emulated output t vs x function occurs where there is a discontinuity in dt
dx
.385

In our scenario the positions of these gradient discontinuities contain useful386

information, since the offset can be thought of as a proxy for the depth in387

the model. As a result, the offset positions of these gradient discontinuities388

contain information about the depths of the boundaries in our structure.389

Rather than seek to emulate the gradient function to probe this informa-390

tion, we calculate the second derivative of the t vs x function (Figure 8), and391

given we are using 4-layer models, we aim to estimate the offset positions x392

of the three largest spikes in this ψ =
(

d2t
dx2

)2
function. Note that we use393 (

d2t
dx2

)2
rather than d2t

dx2 in order that the ψ is positive definite, simplifying394

23



A

B

C

0 10000 20000 30000 40000 50000

Offset (m)

Emulator Residuals

5
0

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

3
5
0

tt
 r

es
id

u
al

 (
m

s)
5
0

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

tt
 r

es
id

u
al

 (
m

s)
5
0

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

tt
 r

es
id

u
al

 (
m

s)

0 10000 20000 30000 40000 50000

Offset (m)

Emulator Residuals

0 10000 20000 30000 40000 50000

Offset (m)

Emulator Residuals

Figure 7: Sample seismic emulator output traveltime data residuals using (A) 100, (B)

1,000 and (C) 10,000 simulator runs to generate the emulator. Green dots are the residuals

for the models used to create the emulator and red dots the residuals from running the

emulator for 10,000 further models not used for training. Notice two effects: 1) The

emulator traveltime residual for new models (red dots) decreases with increased training

runs. 2) On using 100 runs, the emulator traveltime residual computed using the models

used to construct the emulator is smaller than that for running the 10,000 further models,

whereas on using 1,000 training runs, the emulator traveltime residual function for those

models well represents that obtained on running further models, implying that ∼1,000

training models are sufficient to cover the model space.24



the process of picking the extrema.395

We choose to do this because, given we are using a polynomial to rep-396

resent the t vs x function, if we try to fit a polynomial to the derivative of397

this function, dt
dx
, the result of the Least Squares fit is likely to simply be398

the derivative of the function given by our α-coefficient polynomial repre-399

sentation, which we could calculate analytically, and so we would not gain400

further useful information. Also, the parts of the gradient function contain-401

ing the most useful information are the steepest-turning regions, which are402

the most difficult parts to fit using smooth functions. Another advantage403

of the ‘spike’-fitting approach over trying to predict the gradient function404

itself is that the number of data points we are aiming to fit for an n-layered405

model is n-1, so in our case we are trying to fit only three datapoints (the406

x-positions of the three largest spikes in the ψ =
(

d2t
dx2

)2
function). Having407

only three datapoints to fit thus makes the emulator construction process408

considerably more efficient.409

2.8. MT and Gravity emulators410

A similar method was used to build emulators for the MT and gravity411

modelling scenarios. The forward simulator codes used for training these412

emulators were based on those by Avdeev et al. (2002) and Moorkamp413

et al. (2011), respectively. In the case of MT, the forward simulator gen-414

erates a complex impedance as a function of frequency Z(ω) = Re(Z(ω)) +415

i.Im(Z(ω)), in an analogous way to the seismic simulator, which generates416

travel times as a function of offset t(x). We therefore use a similar strategy as417

for the seismic case in order to predict the MT simulator output for a given418

set of model parameters. Firstly, we reduce the dataset by fitting a set of419
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Figure 8: Synthetic t vs x plot (red), with (scaled) ψ =
(

d2t
dx2

)2
overlaid (black). The aim

is, to within a known uncertainty, predict the positions of the three largest maxima of the

(x,ψ) function. In this example, ψmax are seen at x ≈ 1500, x ≈ 5500, x ≈ 27000.

polynomial coefficients αMTR and αMTI to the simulator outputs Re(Z(ω))420

and Im(Z(ω)) respectively. We then fit these αMTR and αMTI to the model421

parameters ⃗θMT . The formulation is shown in Equations 15-28.422
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Emulating R(ω) = Re(Z(ω)):

log(R(ω)) =

(
pMT∑
i=0

αiR (log(ω))i
)

+ gpMTR(ω) (15)

θMT =
(
r1 r2 r3 r4 s1 s2 s3 s4

)T
(16)

αiR =

(
wMT∑
k=1

qMT∑
j=0

βijkRθ
j
ijk,MT

)
+ giR( ⃗θMT ) (17)

log(R(ω)) =

(
pMT∑
i=0

((
wMT∑
k=1

qMT∑
j=0

βijkRθ
j
ijk,MT

)
+ giR(θMT )

)
(log(ω))i

)
+ gpMTR(ω)

(18)

=

pMT∑
i=0

wMT∑
k=1

qMT∑
j=0

βijkRθ
j
ijk,MT (log(ω))i +G(ω, ⃗θMT ) (19)

≈
pMT∑
i=0

wMT∑
k=1

qMT∑
j=0

βijkRθ
j
ijk,MT (log(ω))i +Gω,R(ω) (20)

Gω,R(ω) =

√∑nmax

n=1 (Rem,n(ω)−Rsim,n(ω))
2

nmax

(21)
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and I(ω) = Im(Z(ω)):

log(I(ω)) =

(
p∑

i=0

αiI (log(ω))
i

)
+ gpI(ω) (22)

θMT =
(
r1 r2 r3 r4 s1 s2 s3 s4

)T
(23)

αiI =

(
wMT∑
k=1

qMT∑
j=0

βijkIθ
j
ijk,MT

)
+ giI(θMT ) (24)

log(I(ω)) =

(
pMT∑
i=0

((
wMT∑
k=1

qMT∑
j=0

βijkIθ
j
ijk,MT

)
+ giI(θMT )

)
(log(ω))i

)
+ gpMT I(ω)

(25)

=

pMT∑
i=0

wMT∑
k=1

qMT∑
j=0

βijkIθ
j
ijk,MT (log(ω))i +G(ω, ⃗θMT ) (26)

≈
pMT∑
i=0

wMT∑
k=1

qMT∑
j=0

βijkIθ
j
ijk,MT (log(ω))i +Gω,I(ω) (27)

Gω,I(ω) =

√∑nmax

n=1 (Iem,n(ω)− Isim,n(ω))
2

nmax

(28)

After testing we chose pMT = 9 and qMT = 3.423

Examples of the uncertainty function calibrated over 1000 models after a424

single emulation cycle are shown in Figure 9.425

In the case of gravity, because we are in a 1D setting, there is only a426

single gravity point. There is therefore no need to perform the first stage,427

of reducing the dataset, since there is only one point. In the case of gravity,428

we therefore simply fit the simulator gravity outputs ϕ directly to the model429

parameters θ⃗grav and calibrate the predictive uncertainty, as in Equations430

30-31.431
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Figure 9: Standard deviation of MT emulator residual at each frequency point for Re(Z)

(left) and Im(Z) (right).
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ϕ =

(
wgrav∑
k=1

qgrav∑
j=0

βjk,gravθ
j
k,grav

)
+ ggrav( ⃗θgrav) (29)

ggrav( ⃗θgrav) ≈

√∑n
i=1 (gi,em − gi,sim)

2

n
(30)

(31)

2.9. Using the emulators432

Having built emulators for each of the seismic, gravity and MT simulators,433

we then use the four of them in order to screen model space for implausibility.434

Figure 10 shows the results of using a preliminary seismic emulator to435

screen a set of 10,000 models drawn from the model space over which the436

emulator was trained (Figure 3). The screening is carried out by generating a437

candidate model, computing the emulator output predicted dataset, and then438

comparing the predicted dataset to the target dataset. In the seismic case,439

for example, if the target dataset lies within γseisGx of the emulator predicted440

output, where γseis is a scaling factor designed to ensure a high probability441

of the true model parameter set being selected in a synthetic test, then the442

model parameter set is deemed to be plausible. Here we choose γseis to be 3,443

and so the plausibility condition is as shown in Equation 32.444

∑
n min [|(tem(xn)− ttarg(xn)| − γseisGx(xn), 0]

n
< 1 (32)

Statistics pertaining to the construction of the emulator are shown in445

Table 1. Note that using the emulator we can rapidly reduce the plausible446

model space to 213/10,000 (2.13%) of the original “prior” model space, and447

that we have done this in a time of around 5 minutes (most of which is used in448
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building the emulator itself rather than actually screening the models) rather449

than about 45 minutes, which is how long it would have taken to run the450

same number of models through the full simulator on the same computer.451

In order to verify that the system was behaving in a sensible manner, i.e.452

that it was selecting plausible models for which the full simulator output (as453

opposed to simply the emulator output), the full simulator data outputs were454

then computed and plotted for each of the 10,000 models. Figure 10 shows455

the full simulator outputs for the models which the emulator deemed to be456

plausible (green) and those it deemed implausible (blue), as well as the target457

simulated dataset (red). Note that all the simulated data outputs for models458

deemed plausible by the emulator lie close to the target dataset whereas the459

simulated outputs for the models deemed implausible by the emulator lie far460

from the target dataset. This suggests that the emulator is indeed useful for461

screening the model space, as intended.462

The seismic, spike, MT and gravity emulators can together be used to463

screen model space. Candidate models are generated from the prior model464

space shown in Figure 3, where the density, resistivity and seismic velocity465

parameters are linked by the uncertain physical relationship as shown in466

Figure 5. We then use each of the four emulators to screen these models to467

discern which models are jointly plausible given our assertions regarding the468

data uncertainty, relationship uncertainty, model discrepancy and potentially469

other uncertainties. In this example, because we are using three methods to470

screen models, we use a starting model pool of 100,000 models. Figure 11471

shows the contribution each method is making to constraining the plausible472

space. If the user wishes to bias the selection weighting towards one of473
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Figure 10: Rejection of implausible model space using the seismic emulator. The upper

plot shows the result of assuming zero measurement error in the screening function, and

the lower plot assumes a measurement error of 50 ms. The red dots show the result of

running the model simulator for a chosen set of model parameters, the “target” travel

time dataset. The emulator output is then compared for each of 10000 models which were

not used to construct the emulator. For comparison, these 10000 models were then run

through the full simulator and the outputs for those which were selected by the emulator

are plotted using green dots and those which were rejected from running the emulator are

plotted in blue. In the case where no measurement error is assumed, 213/10000 models

were selected, and in the case where measurement error of 50ms is assumed, 498/10000

models were selected.
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MT: 1319
(1.3%)

Seismic: 8023
(8.0%)

Gravity: 11182
(11.8%)

All: 53
(0.05%)

MT+Grav: 145
(0.15%)

Seis+Grav: 1333
(1.3%)

Seis+MT: 173
(0.2%)

Figure 11: Model selection statistics using the seismic, gravity and MT emulators to jointly

select plausible model space. Using these three emulators, it is seen that only 53/100000

(0.05%) of the model parameter space is plausible after a single cycle.

the methods, then the scaling factor γseis, γMT and γgrav can be changed474

accordingly at the user’s discretion. However, to ensure reliability of the475

system, each γx should be calibrated such that there is a high probability476

that, should for a synthetic example, the “true” set of model parameters be477

presented to the system, there is a very high probability that the model will478

be accepted. In our scenario here, we chose γseis = γMT = γgrav = 3, which479

meant that 97% of the time, for a large number of target models, the “true”480

model parameter set (that used to generate the synthetic data) was deemed481

plausible.482

2.9.1. Multi-cycle screening483

Having used the emulators to test for plausibility and sampled the prior484

model space, we can then use this plausible region to construct new emula-485

tors, which, because they are built over a smaller model space, will generally486

have better predictive accuracy, and thus can be used to further constrain the487

plausible model space for a given target dataset. At each cycle, we therefore488

expect the uncertainty functions associated with each emulator to reduce in489
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magnitude. We ran the scheme over 11 cycles (after which there was no490

discernible reduction in the emulator uncertainty functions), at each cycle491

seeking to find 1000 plausible models with which to both build a new emu-492

lator, and reduce the size of the model space being screened. The number of493

candidate models generated at each cycle in order to find 1000 plausible ones494

is shown in Table 1. Because we are able to exclude a model as implausible495

on the basis that it is deemed implausible by any one of the seismic, spike,496

MT or gravity cases, we do not need to generate the emulator output for497

each method for every candidate model. However, for a candidate model to498

be deemed plausible and so be used in the subsequent cycle, it must “pass”499

the plausibility test in each case.500

Note also that after the first cycle, the plausible model space to be501

searched isn’t defined simply by the marginal parameter bounds, but also502

by the condition that a model was “passed” by the emulator screening from503

the previous cycle. Therefore in each cycle, for a candidate model to be504

deemed plausible, it must not simply be screened by the emulators gener-505

ated using the plausible model space from the immediately previous cycle,506

but by those generated by all previous cycles. So, for a model to be deemed507

plausible on the 11th cycle, it must pass 44 screening tests (using each of the508

seismic, spike, MT, and gravity emulators from each of the previous cycles).509

However, if a model fails at any one of these stages, it is deemed implausible.510

Because for a model to deemed implausible, only one “failure” is required,511

the computational efficiency of the screening process can be maximised by,512

for example, ordering the screening process such that the apparently most513

stringent screening method (seismic, spike, MT or gravity) is run first. This514
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can be tested using each screening method separately. In Figure 11, the515

MT selection is clearly the most stringent. However, in considering screening516

efficiency, it is also the case that each emulator (seismic, spike, MT or gravity)517

can take differing times to run (this is a function of the number of coefficients518

requiring computation in each case), as shown in Table 1. The efficiency of519

candidate model rejection is thus a function both of the emulator run time520

and the stringency of that emulator. In the example presented here, for each521

candidate model we screened using the gravity and spike emulators first,522

since these were the faster to run emulators (due to computing single data523

points rather than coefficients for data functions in the case of the seismic524

and MT cases).525

On implementing this screening strategy, the marginal parameter his-526

tograms for the models deemed plausible are plotted in Figure 12. Taking a527

measure of the model space simply defined by a 16-dimensional box around528

the plausible parameter sets, the plausible model space volume has been529

reduced by a factor of 10−19 (or about 0.06 on average per model parame-530

ter). These histograms contain some information about the distribution of531

plausible models and in some instances be used to update the user’s beliefs532

about the plausible parameter bounds. However, the marginal distributions533

often do not convey a large amount of the total information present in the534

distribution of plausible models. In particular, in the full joint distribution,535

there are likely to be inter-parameter relationships which emerge, for exam-536

ple, if the v2 ≈ v3 then due to pseudo-non-uniqueness regarding the model537

specification, there may be a strong trade-off between s2 and s3. In this case538

the histograms would show wide distributions for s2 and s3 but this does539
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not imply that the system is at fault in failing to constrain these layers, but540

given the data uncertainty, and the fact that v2 ≈ v3, the data do not con-541

strain the thickness of these layers particularly tightly, whereas s2 + s3 may542

be constrained very effectively. Such dependencies are, however, indicative543

that it may be appropriate to reduce the number of model parameters since544

there is functional dependence between two or more of them.545

The results presented here were obtained by generating candidate models546

using a marginal parameter sampling scheme; implementing a Sobol algo-547

rithm (Bratley and Fox, 1988) over a uniform distribution to select combina-548

tions of model parameters lying within the bounds. However, the screening549

process efficiency can be greatly increased by sampling from the joint dis-550

tribution from the previous cycle, in that much less time is spent sampling551

redundant model space. We have tested some strategies for doing this with552

some success, though there are number of questions regarding the use of553

non-uniform prior parameter distributions at each cycle which need careful554

consideration, since the choice of prior distribution at each cycle influences555

the output parameter distributions: P (X|A) = P (X).P (A|X)/P (A). Along556

with exploring appropriate parameterizations for a 3D structural scenarios,557

this is a subject of ongoing development.558

3. Application to a real dataset559

A dataset was kindly provided by Statoil, consisting of seismic, MT, and560

gravity data over a salt body. The free air gravity data are shown in Figure561

14. We start by constructing emulators over the joint model space shown562

in Table 2. This model space was chosen after preliminary examination of563
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Figure 12: Histograms showing the marginal parameter distributions after 1 cycle (top), 5

cycles (middle) and 11 cycles (bottom). Notice that as further emulation cycles are carried

out the plausible model space is reduced. Note that the widths of the distribution axes

are the initial ranges defined by our prior model space (Figure 3).
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Figure 13: Misfit functions for each emulator. Bottom: seismic, Middle left: MT (real

part), Middle right: MT (imaginary part), Top left: Gravity, Top right: spike. Misfit

functions for cycles 1-11 are marked by the colours black, red, green, blue, cyan, magenta,

yellow, grey, black, red, green and blue, respectively. Note that the uncertainty for succes-

sive emulation cycles decreases, reflecting the fact that each successive emulator for each

technique is being built over a smaller model space and is thus able to capture more subtle

data output variation than the emulator built in the previous cycle.
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the data and some preliminary modelling to see which general class of mod-564

els may be suitable. In order to test the methodology and avoid difficulties565

associated with designing a suitable conditional sampling strategy, at each566

emulation cycle we use a simple marginal sampling strategy, again sampling567

using a Sobol algorithm, from uniform distributions over the range of model568

parameters from the models deemed plausible from the previous cycle. Fig-569

ures 15 and 16 show results from using only the seismic emulator to screen570

model parameter sets from a region over salt (MT7) and a region where there571

is no salt (MT12). The locations of MT7 and MT12 are shown in Figure 14.572

It can be seen from Figures 15 and 16 that the system is clearly detecting573

the salt body by virtue of the fact that layer 3 clearly has a salt-like velocity574

at MT7 whereas at MT12 this is not the case.575

We then included the MT and gravity emulators in the screening pro-576

cess. To generate joint candidate models, we utilise other data provided by577

Statoil to elicit a relationship between resistivity and seismic velocity for the578

local region for both the salt and sedimentary regimes. The relationship for579

the sedimentary case is shown in Equation 34. As in the synthetic exam-580

ple, we use Gardner’s relation for the relationship between seismic velocity581

and density. Using the information provided by Statoil, and because the582

relationship is empirical and uncertain, we also specify an uncertainty, this583

time normally distributed, on both the resistivity and density as a function584

of velocity (Equation 34).585
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log(r) = 1.9421 + 2.4514× 10−5v − 2.9587× 10−7v2 + 6.3142× 10−11v3 +N(0, 0.44)

(33)

log(ρ) = 0.554 + 0.25 log(v) +N(0, 0.0002) (34)

586

From the same relationship data, the relationship for salt did not follow587

a discernible trend, but was seen to typically comprise velocities close to588

4500 ms−1, very high resistivity (> 100Ωm) and density around 2160 ms−1.589

After our initial analysis (Figure 16), we identified stations which appeared590

to lie over a salt body. In implementing the joint screening method, for these591

stations we specified that layer 3 should comprise salt.592

On studying the system and observing that our method of model param-593

eterization was causing a number of non-unique models to be generated as594

a result of the distribution of layer thickness parameters, we modified the595

sampling scheme to use gamma distributions (with shape parameter 3) in596

order to sample over the thickness parameter ranges.597

Use of real field data necessitates the normalization of the gravity data to598

a particular total model thickness. This was not the case with the synthetic599

experiment because the “true” data were generated using the same simulator600

which was being used to generate the gravity emulator training datasets. The601

real data, however, were not generated with such a simulator and so the sim-602

ulator output must be calibrated against the data. This was accomplished603

firstly by fixing the total model thickness to 12 km, and secondly by using604

one MT station (MT12) as a calibration station, in that we performed model605

screening simply using the MT and seismic datasets, then used the observed606
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relationship to give a distribution of plausible gravitational models at this607

station. The gravity simulator outputs for these models were then gener-608

ated and the modal (most likely) gravity value from this output distribution609

used to calibrate an offset against the observed gravity value at this station.610

This calibration was then applied at each of the other stations, where grav-611

ity screening was included. Figure 17 shows the parameter histograms and612

uncertainty functions for MT7, located over a major salt feature. These were613

obtained using the seismic, gravity and MT emulators to screen the model614

space. Note that the spike emulator was not used here because the data615

did not contain sufficiently discernible gradient discontinuities for the spike616

emulator to be built reliably. Note, on comparing Figure 17 with Figure 15,617

we have also modified the prior velocity bounds (given by the range of the618

histogram axes in Figure 15). This was in order to ensure that joint models619

on the tail of the interparameter relationship distribution (Equation 34) were620

included in the distribution of candidate models.621

4. Discussion622

The synthetic example described in Section 2.9, demonstrates how the623

method is effective at screening model space for plausibility and how, in624

a multi-cycle regime, this emulator-based approach provides a means for625

quantifying the uncertainty associated with a modelling scenario.626

In both the synthetic and real data examples, we see from the uncer-627

tainty plots in Figures 13 and 16 that the emulator uncertainty functions are628

reducing with increasing cycle. This shows that at each cycle, more struc-629

ture is being obtained about the relationship between the model parameters630
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and the data. The limit of these uncertainty functions represents the total631

uncertainty associated with the system, given user specifications about the632

model space, the emulator parameterization, inter-parameter relationships,633

data uncertainty, model discrepancy and others.634

Comparing Figures 13, 16 and 17 shows that in the case of the synthetic635

example the emulator uncertainty functions converge more efficiently than636

in the case of the real data. Primarily this is due to the fact that in the637

synthetic case, the class of model parameterization used to generate the syn-638

thetic dataset (4 layers) is of the same class as the candidate models being639

screened, whereas in the case of the real data, it is not the case that the earth640

structure which generated the data consists of four distinct layers. Hence,641

we also did not implement the spike emulator for screening in the case. This642

highlights a limitation in our current implementation and how by incorpo-643

rating more user knowledge about the target structure, more informative644

results will be obtained through use of an intelligent and appropriate class645

of parameterization for the candidate models.646

As discussed briefly in section 2.9.1, we have implemented a relatively647

simple marginal parameter sampling strategy. This means that model space648

is excluded conservatively and that the considerable amount of joint informa-649

tion contained in the full distribution of plausible models from the previous650

cycle is not used. In developing the methodology further, particularly in the651

case of more highly parameterized models, investigating conditional sampling652

strategies will doubtless increase the efficiency of the method further.653

Our results show the value of a top-down Monte Carlo model screen-654

ing approach, where the constraint process begins by considering the whole655
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model space, rather than seeking to iteratively search the model space for656

increasingly likely models. In particular, adopting such an approach removes657

the possibility of underestimating the uncertainty associated with the sys-658

tem through undersampling of the model space. The adoption of a simple659

Monte Carlo screening scheme also means that all kinds of uncertainty can660

be included in the analysis simply by generating the appropriate class of661

candidate models, and allows for straightforward and explicit specification662

of prior beliefs and uncertainties associated with the system, which is often663

not the case with a search-based deterministic approach.664

4.1. Monte Carlo sampling or inverse solvers?665

Although we are strongly advocating the use of a forward screening ap-666

proach in order to fully sample prior model space, we are not proposing that667

this is the only valid “prescription” for geophysical constraint. The appro-668

priate set of tools clearly depends on the system concerned, the degree of669

importance attached to understanding the uncertainty associated with the670

system, and the scale of the uncertainty in the problem relative to the size of671

the potential space within which plausible models are being sought. For sys-672

tems where there is no, or very little, uncertainty present in the system, and673

thus where the plausible model space reduces to a point, or perhaps a col-674

lection of separated points, then a sampling method, such as that advocated675

here, will be very inefficient, since the probability of the system generat-676

ing the one correct model will be very small (a ‘needle in a haystack’). In677

this case, an inverse search-based solver will rapidly and usefully find an ac-678

ceptable model. This result may then either be deemed sufficient in and of679

itself, or be used to update the scientist’s understanding and beliefs about680
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the system, and allow a contraction of the relevant region of model space,681

over which a full sampling may then be carried out, perhaps facilitated by682

using an MCMC method.683

Often, however, there is a considerable amount of uncertainty in the sys-684

tem, but in order to obtain a result this may be ignored and it is often the685

case that a single result is presented with a weakly substantiated statement686

regarding the uncertainty on the result. In this study we have presented a687

means by which a full sampling of the model space, which is required in order688

to make robust statements regarding the uncertainty, may be tackled.689

4.2. Full simulator code or emulator?690

For the 1D problem shown here, it would doubtless be more efficient to691

obtain a solution using the full simulator codes, and although we have used692

a simple scenario to demonstrate the method, we do not suggest that the693

emulation approach is necessarily the optimum way to obtain a solution for694

this particular problem.695

For the purposes of screening model space, given that an emulator is696

trained using runs of the full simulator, it is a pertinent question as to whether697

it would simply be more efficient to use the full simulator outputs. In many698

ways the emulator described here can be thought of as interpolating the699

model space between ‘known’ points sampled by the full simulator by rapidly700

computing approximate outputs for the region between known points. For a701

very large model space and where the simulator is computationally expensive,702

and so the full simulator sampling is relatively sparse, it can greatly aid the703

ability to discern the extent of the plausible region to estimate the region704

between the sparsely known points. In cases where it is feasible to use the705
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full simulator code to sample the prior model space to a sufficient degree,706

then in deeming the sampling density sufficient, there is by definition no707

need to build an emulator. An emulator can therefore be considered useful708

whenever it would be helpful to be able to quickly interpolate between points709

of known model space. Once the plausible regions of model space have been710

clearly identified as plausible given the uncertainties in the system, then the711

user may wish to sample this region using the full simulator code.712

As parallel computation methods are becoming increasingly common-713

place, running a forward Monte Carlo screening scheme using the full sim-714

ulators on a parallel system is clearly feasible. Indeed, the increasing use715

of parallel systems will doubtless make larger numbers of forward simula-716

tions feasible for larger problems too. However, given the size of the prior717

model spaces for many modern real-world geophysical problems, in order to718

screen the entirety of the model space, rather than adopting an MCMC or719

deterministic bottom-up search-based strategy, it is difficult to see how this720

could be achieved in the medium-term without a proxy-based method such721

as emulation, and based on the results presented here, and from examples in722

other fields, for example in Rougier et al. (2009) and Vernon and Goldstein723

(2009), we propose that emulation may provide a valuable tool for geophys-724

ical structural constraint.725

5. Conclusions726

In this paper we have shown that the method of emulation has the poten-727

tial to make a large contribution in the field of geophysical modelling. From728

the results presented, it is clear that use of an emulation method makes pos-729

49



sible the handling of entire model spaces, rather than small portions thereof.730

In the synthetic example, shown in Section 2.9.1, we have shown how, using731

a desktop computer workstation over a period of ∼72 hours, 245 million sets732

of model parameters could be screened for plausibility, and that in general733

use of an emulator affords a speed increase of several orders of magnitude in734

terms of the rate at which models can be screened for plausibility.735

In applying the method to a real dataset, we have also shown that an736

emulator-based approach can be used to discern the plausible region of model737

parameter space for a practical problem. The approach taken here is quite738

simplistic in terms of the methodology and parameterization, however these739

results show that with the application of larger computational resources,740

emulators may make possible the handling very large model spaces for 3D741

systems throughout geophysics.742

In the field of deep crustal imaging, it is commonly the case that un-743

certainties in data and in physics are not handled in a robust way, and744

prior beliefs or assertions about the system are often not explicitly stated.745

The result is that we often present an optimum model without a thorough746

assessment of the associated uncertainty. We have presented, using a sim-747

ple geophysical example, an approach which seeks to practicably tackle the748

screening of the entire model space, with the aim of discerning all plausible749

regions, rather than adopting a search-based approach, which may be prone750

to not considering useful regions of model space, and to implicit conditioning751

through sometimes weakly justified choice of regularization and smoothing752

parameters.753

Our aim here is not to present the model screening approach as the only754
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useful means for structural constraint. Indeed, as we discuss in Section 4,755

the inverse and search-based approaches are highly useful particularly when756

there is little uncertainty associated with the system and where there is757

strong information about the plausibility of the prior model space. We are,758

however, advocating that although they have not generally been employed759

in recent decades on the grounds of computational expense, model screening760

apporaches such as that presented here, are increasingly feasible, and that761

proxy-based emulators and other similar tools have the potential to help762

facilitate this kind of screening method.763
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Cycle Models tested

1 29,302

2 1,011,997

3 1,536,936

4 3,188,711

5 5,815,746

6 14,041,545

7 10,080,014

8 7,010,975

9 145,511,481

10 34,384,460

11 31,993,618

Total 245,532,785

Number of runs Seismic simulator time Seismic emulator time

104 45 minutes 15s

2.4× 106 7.5 days 1 hour

5.76× 107 180 days 1 day

Number of runs MT simulator time MT emulator time

104 12.8 minutes 1 minute

2.4× 106 2.1 days 4 hours

5.76× 107 50.4 days 4 days

Number of runs Gravity simulator time Gravity emulator time

104 3s 3s

2.4× 106 12 minutes 12 minutes

5.76× 107 4.8 hours 4.8 hours

Table 1: Left: Number of models tested in each emulator cycle (by each of the spike,

gravity, MT and seismic emulators) in order to generate a population of 1000 plausible

models. The histograms of the final selection are shown in Figure 12. Right: Typical run

times for the simulator vs emulator for each of the seismic, MT and gravity cases on a

high end workstation. The typical time required to construct the emulators ranged from

30 s in the case of the gravity emulator to about 10 minutes in the case of the seismic

emulator. Note that the main factor controlling the emulator times is the number of α

and β coefficients being used. As a result, while the MT simulator is considerably faster

than the seismic simulator, the seismic emulator is faster to run than the MT emulator.

In the case of the gravity emulator, the simulator is very simple and outputs only one

point, and hence the emulator affords little advantage over the full simulator in this case.

Comparison times for the spike emulator are not shown since it was run “piggy-backing”

on the seismic emulator.
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Layer: 1 2 3 4

Velocity (ms−1): 1600-2800 2000-5500 2000-6500 2000-6500

Density (kgm−3): 1800-3600 1800-3600 1800-3600 1800-3600

Resistivity (Ωm): 0.5-30 0.5-30 0.5-30 0.5-30

Thickness (m): 300-1000 300-1000 300-1000 300-1000

Table 2: Prior model space used for real dataset.
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