
Structure of the mantle beneath the Alboran Basin from Magnetotelluric 

Soundings 

 X. Garcia1, H. Seillé2, J. Elsenbeck3, R.L. Evans3, M. Jegen4, J. Ledo5, A. 

Lovatini6, A. Marti5, A. Marcuello5, P. Queralt5, C.R. Ranero7, and C. Ungarelli6 

 Abstract 

We present results of marine MT acquisition in the Alboran sea that also incorporates 

previously acquired land MT from southern Spain into our analysis. The marine data 

show complex MT response functions with strong distortion due to seafloor 	

topography and the coastline, but inclusion of high resolution topography and 	

bathymetry and a seismically defined sediment unit into a 3D inversion model has 	

allowed us to image the structure in the underlying mantle. The resulting resistivity 	

model is broadly consistent with a geodynamic scenario that includes subduction of 	

an eastward trending plate beneath Gibraltar, which plunges nearly vertically beneath 	

the Alboran. 	
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Our model contains three primary features of interest: a resistive body beneath the 	

central Alboran, which extends to a depth of ~150 km. At this depth, the mantle 	

resistivity decreases to values of ~100 Ohm-m, slightly higher than those seen in 	

typical asthenosphere at the same depth. This transition suggests a change in slab 	

properties with depth, perhaps reflecting a change in the nature of the seafloor 	

subducted in the past. 	

 	

Two conductive features in our model suggest the presence of fluids released by the 	

subducting slab or a small amount of partial melt in the upper mantle (or both). Of 	

these, the one in the center of the Alboran basin, in the uppermost-mantle (20-30km 	

depth) beneath Neogene volcanics and west of the termination of the Nekkor Fault, is 	

consistent with geochemical models, which infer highly thinned lithosphere and 	

shallow melting in order to explain the petrology of seafloor volcanics. 	

 	

Introduction 	

The westernmost Mediterranean is the locus of slow convergence between the Iberian 	

and African plates and, as a result, is marked by complex tectonic activity. The 	

processes dominating the local tectonics have long been debated with a range of 	

models proposed including subduction with various geometries and delamination of 	

lithospheric mantle [e.g., Platt and Vissers, 1989; Lonergan and White, 1997]. 	

Current thinking suggests a model of subduction with an arcuate system but which 	

has a plate that is dipping eastwards beneath Gibraltar and then plunges nearly 	

vertically beneath the Alboran Sea. Rollback of the slab plays a key part in the 	

behavior of the Alboran domain and the formation of the surrounding Betic-Rif 	
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orocline [Lonergan and White, 1997; Wortel and Spakman, 2007; Spakman and 	

Wortel, 2004; Bezada et al., 2013; Palomeras et al., 2014; Thurner et al., 2014]. 	

 	

A good deal of our understanding of the mantle structure beneath the region comes 	

from a range of seismic studies. Seismically active high-velocity lithosphere (either 	

oceanic or sub-continental) is imaged extending beneath southern Spain and the 	

Gibraltar arc in regional tomograms [Bezada et al., 2013; Wortel and Spakman, 	

2000]. Because these structures extend down to the transition zone, they hold a record 	

spanning several millions of years. The occurrence of intermediate-depth and deep 	

earthquakes suggests the subduction of oceanic lithosphere [e.g., Gutscher et al., 	

2002]. 	

 	

Global tomographic models appear to show a high P-wave velocity feature that is 	

slab-like converging from the Atlantic and dipping to the east beneath Gibraltar 	

before plunging beneath the Alboran [Amaru, 2007; van Hinsbergen et al., 2014]. A 	

widespread region of reduced velocities is seen in the upper mantle above the 	

downgoing slab. More focused tomography, using an array of seismometers deployed 	

throughout Spain, Morocco and including some seafloor instruments, confirms the 	

presence of a high velocity anomaly with an arcuate structure that plunges nearly 	

vertically beneath the Alboran through the 410 km discontinuity [Bezada et al., 2013]. 	

Beneath the Alboran, velocities are high throughout the model.  	

 	

A shear-wave velocity model derived from Rayleigh wave data also shows a high 	

velocity anomaly centered beneath the Alboran from a depth of about 75 km 	

[Palomeras et al., 2014]. This model has greater resolution within the crust and 	
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upper-mantle than does the teleseismic tomography model, and highlights a region of 	

low velocities beneath Gibraltar with a peak low velocity anomaly magnitude at 50 	

km depth. Another low-velocity zone is coincident with a major strike-slip fault 	

running through the Alboran [Platt et al., 2013], which has been interpreted by some 	

to mark the plate boundary between the Alboran domain and the African plate. The 	

low-velocity anomaly sits below Neogene volcanics mapped on the seafloor. 	

Thermobarometric constraints on these volcanics indicate shallow depths (~20 km) 	

and high temperatures of melt equilibration, suggesting extremely thin lithosphere 	

beneath the Alboran [Thurner et al., 2014]. Crustal thickness beneath these volcanics 	

is thinner than the regional norm with a value of ~20 km. 	

 	

Geodynamic modeling has been used to determine which evolutionary history of 	

competing subduction zone geometries are consistent with present day observations 	

[Chertova et al., 2014]. The model which is most consistent with the present day 	

tectonic framework and seismic images of the mantle began with a short subduction 	

system with a ~NW convergence near the Baleares in eastern Spain. This system split 	

into two separate subduction systems, one jumping to the northern African coast, east 	

of our survey area (Figure 1), and the other progressively rolling back through the 	

Alboran until it achieved the arcuate structure seen today.  	

 	

Dense coverage of SKS splitting data has been obtained throughout the region. The 	

patterns of splitting are complex, but have an arcuate shape surrounding the Alboran 	

[Miller et al., 2013]. Geodynamic modeling has been carried out to seek models that 	

best reproduce the observed splitting patterns [Alpert et al., 2013]. The best fitting 	

model contains an elongated slab (~500 km wide) beneath the Iberian margin that 	
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curves southwards on approach to Gibraltar. The slab is essentially a vertical structure 	

in the mantle extending to a depth of ~550 km, and best reproduces responses if it has 	

a high viscosity compared to the surrounding mantle (a factor of 250 times more 	

viscous).  	

 	

Land magnetotelluric (MT) data in southern Spain have been previously used to 	

image an area of low resistivity coincident with an area of low seismic velocities and 	

with an absence of seismicity, interpreted as asthenospheric material intruded by the 	

lateral lithospheric tearing and breaking-off of the east-directed subducting Ligurian 

slab under the Alboran Domain [Rosell et al., 2011]. Although controversial, this 

model is somewhat consistent with the structure of the slab inferred from seismic 

imaging, which shows a detachment of the slab from the lithosphere beneath southern 

Spain [Thurner et al., 2014]. This model is also consistent with results obtained by 

Mancilla et al. [2013] using geodetic and receiver transfer function analysis and with 

uplift rates necessary to explain sea-level changes in the Mediterranean and the 

Messinian Salinity Crisis [García Castellanos and Villaseñor, 2011]. 

 

Marine Magnetotellurics (MMT) uses the same principal as land MT but requires 

instrumentation that can operate at high pressure on the seafloor. The techniques has 

been used by academia since the early 70s [e.g., Filloux, 1980] although more 

recently, in  part due to interest in the method from industry [e.g., Strack, 2014], 

access to greater number of instruments with improved hardware has made the 

method a powerful tool tool for marine exploration that is complementary to seismic 

techniques [see e.g., Baba, 2005; Worzewski et al., 2010; Key, 2012; Naif et al., 

2013]. 
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Survey 

As part of several international projects carried out in this area, MT methods have 

been used to explore the crust and upper mantle (Figure 1). We present results from a 

marine MT survey carried out in the Alboran Sea, but incorporating a subset of the 

land MT data previously collected in the Betic chain to better	 constrain	 the	 limits	 of	

the	model	and	thus	include	all	the	structures	that	influence	the	measured	data. 

 

The Alboran Sea has a highly variable bathymetry, extending to as deep as 2000 m. 

The region hosts an active fishing industry, with bottom trawling a common practice. 

As a result, no sites were deployed in water depths shallower than ~800 m, typically 

the maximum depth of trawling. Despite this restriction, we were able to complete 

good coverage through the Alboran (Figure 1). 

 

We successfully deployed and recovered 12 GEOMAR MMT instruments from 

August – December 2009, and 3 WHOI MMT instruments from November 2010 – 

March 2011. However, 5 additional instruments were lost, in most of the cases due to 

unknown reasons related to a failure in the acoustic communications, all of them at 

the eastern end of the survey region. The instruments were spaced approximately 20 

km apart, and were deployed along a 180 km long E-W transect, and two 100 km long 

N-S transects spaced ~70 km apart.  The registered time series were visually inspected 

for quality, tilt-corrected, rotated to the magnetic north, and finally windowed with 

data from two separate remote references. The GEOMAR instruments did not have 

compasses, so we used By-minimization to perform the rotation to the magnetic north, 

and for remote referencing we used a non-adjacent marine station as well as 
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concatenated data from two land-based long period MT stations from the ATLAS 

experiment (Figure 1). The WHOI instruments did have compass information for the 

magnetic north rotation, and for the remote referencing we used a marine station and 

the INTERMAGNET observatory station in Ebro, Spain. These time series were 

processed using the robust bounded influence remote reference processing (BIRRP) 

algorithm (Chave and Thomson, 2004), providing useful MT and tipper responses 

from 100 seconds up to greater than 30,000 seconds. 

 

We are currently re-processing all the time series available using a new algorithm 

[Neukirch and Garcia, 2014], which provides more reliable responses at longer 

periods that will allow us to obtain better images of the deeper structures. 

 

Data analysis 

The marine data (15 MMT sites) show complex MT response functions with strong 

distortion due to seafloor topography [e.g., Baba and Seama, 2002; Baba and Chave, 

2005] and the coast effect [e.g., Key and Constable, 2011; Worzewski et al., 2012], 

suggesting at least a moderately resistive lithosphere beneath the seafloor (Figure 2). 

The sharp peak in resistivity at around 300 s is a clear indication of coastal effects, as 

is the rolling of the phase. All elements of the impedance tensor are of comparable 

size (i.e., there is no rotation direction in which the diagonal elements of the tensor are 

substantially smaller than the off-diagonal elements as would be expected over 

structure with 2D-like characteristics). The land data used in the analysis were a 

subset, chosen on the basis of long-period (over 100 s if possible) data quality, of 

those already discussed in Rosell et al. [2011] where readers can find details of 

acquisition and processing. 
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The 3D nature of both land and marine MT datasets, the close proximity of two 

complex coastlines and a rugged seafloor bathymetry, made 3D inversion the only 

viable tool to obtain an electrical resistivity model of the lithosphere beneath the 

northern branch of the Gibraltar arc, comprising the Alboran sea and the Betics. It 

would not have been possible, for example, to remove the effects of seafloor 

bathymetry from the data [e.g., Baba and Chave, 2005] to permit inversion over a flat 

seafloor, while maintaining the coastline geometry and including land data in the 

analysis. 

 

Despite recent advancements in 3D inversion of MT data [Siripunvaraporn, 2012], 

surprisingly few 3D codes were available to us for handling such a complex data set. 

 

3D modeling 

All the 3D inversions were carried out using on the 3D non-linear conjugate gradient 

(NLCG) algorithm [Mackie and Madden, 1993; Rodi and Mackie, 2001] as 

implemented by Schlumberger. The algorithm minimizes the misfit between observed 

and computed data, using the framework of Tikhonov regularization [Tikhonov and 

Arsenin, 1977]. The code uses a regularization operator to produce a smoothly 

varying resistivity volume. The code is essentially the same as that used by Burd et al. 

[2013], although in our case the requirement to include land and marine data made the 

process more complex and computationally expensive. 

 

An independent inversion of the land sites alone was first carried out in order to 

constrain the shallow structure beneath the Betics area derived from the higher 
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frequencies available in the land data not included in the subsequent joint land-marine 

inversion. The resulting model was used as a preliminary model for the inversion of 

land and marine sites. To construct this preliminary model, a homogeneous model 

(100 Ohm-m) which included topographic changes on land and which also included 

the ocean (0.33 Ohm-m) and an approximate seafloor bathymetry was used as a 

starting model. Twenty-six periods were inverted between 0.1 s and 10000 s, using 

errors floors of 3% for the apparent resistivity and phases of the off-diagonal elements 

of the impedance tensor (Zxy and Zyx), and 10% for the diagonal elements of the 

impedance tensor (Zxx and Zyy). The inversion converged after 46 iterations with a 

root mean square (RMS) value of 2.62. The responses of the final model match the 

data well at all sites. The model contains the same primary features as that obtained 

by Rosell et al. [2011], particularly the deep NS oriented conductor, which was the 

primary feature of discussion by those authors. 

 

From this preliminary model, the next step was to generate the starting model to be 

used for the inversion of the 13 MT and 15 MMT sites. This was done by running 

intensive forward modeling to verify mesh parameters, particularly for sites on the 

seafloor, and resistivity contrasts. Different factors were tested, especially the size of 

the cells in the central part of the mesh, the resistivity values of the sediments of the 

Alboran sea, and the presence and influence of the sediments of the Atlantic Ocean. 

Bathymetry was determined using the GEBCO08 database [GEBCO, 2008] and the 

thickness of sediments beneath the Alboran was determined from seismic reflection 

data [Soto et al., 2008]. 
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The area of investigation, both onshore and offshore, contains great topographic and 

bathymetric variations, from 2500 m above mean sea-level (AMSL) in the Betic 

Chain to -2000 m in the deepest parts of the Alboran Sea. In the central part of the 

mesh the cell size is 2 km x 2 km horizontally with 50 m thickness from sea-level to a 

depth of 2000 m, necessary to accurately capture the bathymetric variations and their 

impact on the MT responses. The topography was constructed using a cell size 

increasing from 50m thick at sea-level to 200 m thick at 2500 m. This cell size was 

found to optimize mesh dimension (computation time) and precision of the forward 

modeling. Laterally and vertically the mesh was greatly extended to meet the 

boundary and continuity conditions needed to accurately calculate the forward model. 

The resulting mesh contains 3.3 million cells (159 x 186 x 111). 

 

Below the seafloor the presence of conductive sediments had to be imposed, since the 

frequency range of our seafloor data cannot resolve shallow structures. The 

distribution of sediments in the Alboran Sea was constructed using sediment thickness 

imaged by seismic reflection surveys [Soto et al., 2008]. Several values of resistivity 

for the sediments between 0.4 Ohm-m and 2 Ohm-m were tested. In the end, we used 

a gradient, with resistivity increasing with depth, with values chosen in the way that 

were best able to reproduce the responses of the observed seafloor data at periods 

around 30 s. 

 

The northern part of the African continent, the Atlantic Ocean and the Mediterranean 

Sea were included in our starting model (the actual extent of the 3D mesh is marked 

in blue in the inset plot of Figure 1). The sediments of the Atlantic Ocean were also 

included. Sediment thickness reaches more than 5000 m close to the Gibraltar Strait 
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(online data of the National Oceanic and Atmospheric Administration NOAA) at a 

distance around 150 km from the closest MMT site. The presence of this thick wedge 

of sediment affected most of the MMT sites at periods greater than ~100 s, 

particularly for the YX polarization. Figure 2 shows the responses of the starting 

model including the sediments (dotted line) compared to the same model without 

sediments (solid line). The sites located onshore were unaffected by the presence of 

the sediments. 

 

These forward modeling tests were performed in order to start the inversion with a 

model that was already able to reproduce key response features related to the coast 

and bathymetric effects. This process allowed us to incorporate features that are 

known into the inversion, to account for first order distortions in the data related to the 

very strong coast effect in this region and seafloor bathymetry and, as a result, to 

make the inversion process more efficient. The starting model reproduces the cusps of 

the YX polarization associated with the complex coast effect [Worzewski et al., 2012; 

Key and Constable, 2011], the depressed XY polarization, and the phases out of 

quadrant in the responses. An example of this features can be found in Figures 2, 

where off-diagonal elements from sites mm06 and re07 show cusps at 300 s and 

phases rolling out of quadrant around 30 s, with a depressed XY polarization. The 

observed diagonal elements of these sites are shown in Figure 3. 

 

MT/MMT inversion 

The full impedance tensor and the Tipper tensor were inverted at 28 sites. Sixteen 

frequencies between 10 s and 33000 s were included. We applied errors floors equal 

to 1.5% for the off-diagonal components of the impedance tensor (0.87 degrees for 
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the phases and 3% for apparent resistivity), and 10% to the diagonal components 

(5.73 degrees for the phases and 20% for the apparent resistivity). We applied an 

absolute error of 0.05 to the tipper. The running time was on average of about 40 

minutes per iteration. For the inversion process we used a cluster with 30 nodes of 12 

core CPUs each with 64 MB of RAM per node. 

 

Our experience with this data set is that most of the information is contained within 

the MT responses functions. For this reason, the inversion was run in two steps: (1) 

inversion of the impedance tensor for 40 iterations, (2) inversion of the impedance 

tensor jointly with the magnetic transfer function until convergence (25 more 

iterations). In total the inversion iterated 65 times to convergence, reaching a final 

RMS of 2.3. 

 

The responses of the final model fit the data well at all sites with no obvious regions 

that are poorly fit. Figure 3 shows the model response and observed data fit for two 

selected sites. Figure 4 shows a map of misfit for each of the stations included in the 

inversion. Figures 5 and 6 show the final model as a block and slices. 

 

Four prominent features can be clearly seen in the final model (Figures 5a and 5b): (1) 

the presence of a moderately conductive zone (C4) below a strong resistive body 

(R1), that starts at 150 km depth and which extends to the base of the mesh; (2) a 

moderate conductor in the central part of the Alboran Sea (C1) (below sites mm05, 

mm06, re07, re11 and ns01) that extends from below the sediments to a depth of ~40 

km just above the central part of the resistive zone R1; (3) a NS oriented conductor 

(C2), extending from the Betics to the Alboran Sea starting at ~20 km depth, and 
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plunging to the north, reaching a depth of ~60 km below the coast. An additional 

conductor (C3), which is not tightly constrained by our data but nevertheless seems to 

be a required feature, is located West of the survey area under the Gibraltar Arc. 

 

Sensitivity tests 

Sensitivity tests of the three main features discussed were carried out in order to prove 

that they are not simple artifacts of the inversion process or the result of fitting noise 

in the data. First of all, it is important to notice that all the inversion runs, using 

different regularization parameters, converged to final models that contained the same 

three structures discussed above.  This repeatability already gives us great confidence 

that the model structure is robust. Sensitivity testing was done by removing each of 

the conductors separately, substituting them by resistivity values commensurate with 

the surrounding model structure. We carried out both forward modeling of the 

perturbed models to see the difference in responses with and without the conductive 

features, as well as using these perturbed models as starting models for new 

inversions, examining whether the original features returned. We assess the results of 

these tests qualitatively, comparing the responses of the final and perturbed models 

and looking at the reinverted models, and quantitatively comparing the root mean 

square (RMS) values for each site for each test. For the quantitative analysis we 

introduce a term that defines the change in the fitting of our data, for each site and 

each frequency. We refer to this term as the “update” and define it as: 

ሺ%ሻ݁ݐܽ݀݌ܷ ൌ 	100 ൈ
ܵܯܴ െ ଴ܵܯܴ

଴ܵܯܴ
, 

where RMS is the RMS of the perturbed model and RMS0 is the RMS of the final 

model. A positive update corresponds to a worsening of the data fit with respect to the 

original model.  
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During the inversion process we saw that the inclusion of the Tipper data did not 

greatly impact the resulting model: including the Tipper conserved all the structures 

present in the model obtained by inverting only the impedance tensor. We conclude 

from this observation that the inversion was driven primarily by the impedance tensor 

(even though the Tipper data, which contain significant structure, are well fit by our 

final inversion model). We thus performed the sensitivity tests using a higher error 

floor for the Tipper (0.2), in order to focus the tests on the changes related to the 

changes in the fitting of the impedance tensor. 

 

Test 1: 

The transition to a lower resistivity mantle occurs around 150 km depth with values of 

around 100 Ohm-m observed (feature C4 in figures 5 and 6). We raised the resistivity 

of this region to 600 Ohm-m, a value that corresponds to the value of the resistive 

body located immediately above it. We are thus essentially testing whether the 

resistive body could extend deeper into the mantle. The forward modeling of this test 

showed a worsening of the data fit for all the MMT sites at long periods, especially in 

the YX polarization. The map showing the updates of the model after the forward 

modeling of the perturbed model (Figure 7a) highlights this worsening, with greater 

than 10% changes in the RMS for all the MMT sites. Inversion of the perturbed model 

did not recover the initial structure, but was also not able to significantly lower the 

starting RMS, suggesting that the inversion process became trapped in a local 

minimum. We feel that these tests confirm that the presence of a moderately low 

resistivity layer (<100 Ohm-m) between 120 and 150 km depth is required by the 

data. 
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Test 2: 

The anomaly C2 has a resistivity of about 5 Ohm-m, and was substituted by the 

surrounding resistivity in this area (500 Ohm-m). The forward modeling showed a 

significant worsening of the data fit for the sites located above the anomaly (Figure 

7b). The responses were mainly affected in the period range from 20 s -1000 s, 

especially for the XY polarization. 

 

The inversion of the perturbed model converged quickly (after 12 iterations), but 

again was not able to reach the same RMS as the final inversion. However, the 

inversion reintroduced a conductive feature at the same location, albeit at a slightly 

higher resistivity value. Figure 8a shows the original model, and Figure 8b shows the 

model recovered after removing the anomaly. A depth slice view and an EW profile 

section is shown to highlight the lateral extent and depth of the conductor. The 

presence of a conductive body (resistivity <~10 Ohm-m) dipping north is well 

constrained by our inversion. 

 

Test 3: 

Anomaly C1 has resistivity values between 5 and 10 Ohm-m. As for the previous 

tests, a resistivity value close to 500 Ohm-m was used to substitute the conductor. 

Forward modeling of the perturbed model shows a worsening of the data fit for both 

land MT and MMT sites located above and close to the anomaly (Figure 7c). Again, 

responses of this perturbed model differ from those of the original in the 20-1000 s 

period range, especially for the XY polarization. Inversion of the perturbed model 

converged after 16 iterations, without reaching an RMS comparable to the original 
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inversion. The conductor returned in the model, however, although at a slightly 

greater depth than in the original model. The new feature also has a slightly different 

shape, especially in its extension to the north (see Figure 8c).  

 

Discussion  

The four primary features in our model can each be related to a subduction history for 

the Alboran Domain. The deep, vertical resistor in the mantle beneath the Alboran 

Sea relates directly to a high seismic velocity feature that extends to at least 300 km 

depth [Bezada et al., 2013]. This feature has been interpreted as a vertical dipping 

slab plunging into the mantle, and such a feature is also consistent with SKS splitting 

data (Alpert et al., 2013). In our case, the decrease in resistivity at a depth of ~150 km 

(feature C4 in figure 5) could be interpreted either as a termination of the slab or as a 

change in properties of the slab material. The former interpretation is at odds with 

seismic evidence and the reduction in resistivity is not sufficient to unequivocally call 

for a transition to asthenosphere. A change in the properties of the subducting Alboran 

slab has been proposed by Gràcia et al. [2003]. Values of typical asthenospheric 

resistivity at a depth of ~150 km appear, from deep probing soundings in the oceans, 

to be around 30-50 Ohm-m [Sarafian et al., 2015]. A value of ~100 Ohm-m would be 

consistent with a dry, low oxygen fugacity (fO2) asthenosphere, which is plausible, 

but appears not to be typical. Results from the Atlas Mountains to the south show 

resistivity values of ~100-150 Ohm-m in the upper-mantle which have been 

interpreted as lithospheric and not asthenospheric [Kiyan, 2015]. A re-analysis of 

teleseismic data, incorporating more arrivals into the modeling, apparently images a 

change in velocities in the downgoing slab at a similar depth to the observed change 

in resistivity [Max Bezada, Pers. Comm.]. In velocity images, this transition looks 

like a hole in the slab, but is most likely a change in the material that was subducted. 
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A slightly damper lithospheric slab would be consistent with the change in 

resistivities we observe. Our data are not able to image a deeper increase in resistivity 

that would mark the transition back to dry slab at greater depth in accordance with 

seismic imaging.  

 

The conductor associated with Neogene volcanics is also identifiable as a subduction 

related feature (Feature C1 in Fig 5). The location of the conductor is just to the east 

of the downgoing slab, and likely results from the release of fluids from the slab as it 

descends, with subsequent vertical migration of fluids and possible melt generation, 

as has been seen in electrical resistivity images at several subduction zones [e.g., 

Worzewski et al., 2010; Matsuno et al., 2010; Evans et al., 2013; McGary et al., 2014; 

Wannamaker et al., 2014]. In this case, unfortunately, we do not have sufficient data 

coverage (both in terms of frequency and spatially) to well constrain the geometry and 

fluid content of the feature. The upwelling of the fluids appears to be controlled by the 

boundary of the African plate to the southwest, which appears as a dipping resistive 

contact at the location of the Nekkor fault on the seafloor. The conductor sits beneath 

a region of thin crust where the moho is ~20km [Thurner et al., 2014]. The Neogene 

volcanics are consistent with shallow melting processes [Thurner et al., 2014]. The 

presence of melt in the upper mantle in this region would be consistent with high 

seafloor heatflow values which are seen through most of the eastern Alboran Basin 

[Polyak et al., 1996]. 

 

Another conductive feature speaks to the separation between the slab and continental 

lithosphere (Feature C2 in Fig. 5). In an earlier paper, Rosell et al., [2011] interpreted 

a conductor in a similar location as due to a tear in the subducting slab that allowed 
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asthenospheric material to flow upwards. That analysis did not include seafloor data 

and so the extent of the conductor beneath the Alboran Sea was unconstrained. 

Seismic data from the region show changes in velocity in the same area as the 

conductor [Palomeras et al., 2014; Thurner et al., 2014; and right panel in Fig. 8]. 

Rather than a tear in the slab, Thurner et al., [2014] suggest a separation between the 

top of the slab and continental lithosphere that results in lateral asthenospheric flow. 

The gap could be related to delamination of continental lithosphere. Importantly, we 

note that the base of the conductor is coincident with a band of earthquake epicenters 

(IGN, 2015; Figure 9). Given the depth of the base of the conductor (~40 km), the 

coincidence with the inferred top of the slab from seismic data [Thurner et al., 2014] 

and the band of seismicity, we suggest that the conductor represents fluids released 

from the slab due to the transition of basalt to eclogite. Similar fluid release has been 

seen in other subduction settings [e.g., Worzewski et al., 2011; Evans et al., 2014; 

McGary et al., 2014] at a similar depth. It is possible that these fluids migrate 

upwards along the base of the overlying lithosphere and form the slightly shallower 

conductor seen beneath land to the north. 

 

A final feature that can be recognized in our model is located to the West, under the 

Gibraltar Straight (Feature C3 in Fig. 5). Although we do not have sufficient site 

coverage in this region to properly resolve this feature, the anomaly is robust and 

required by the inversion. Palomeras et al. [2014] image a low velocity feature at the 

same location, on top of the Alboran slab. 

 

Conclusions 
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We	have	 collected	 a	 complex	marine	MT	 data	 set	 from	 the	 Alboran	 Sea	 in	 the	

western	 Mediterranean.	 The	 data	 are	 highly	 three‐dimensional	 in	 form	 and	

required	a	 fully	3D	 inversion	 treatment	 incorporating	seafloor	bathymetry	and	

coastline	geometry	in	order	to	properly	capture	first	order	distortion	effects	on	

the	data.	Despite	the	significant	distortion,	through	careful	inversion	of	both	land	

and	 marine	 MT	 data,	 we	 have	 been	 able	 to	 constrain	 primary	 features	 in	 the	

mantle	that	point	to	a	complex	subduction	history	for	the	region.		These	features	

include	two	conductors	we	interpret	as	caused	by	the	release	of	fluids	from	the	

subducting	 slab.	 The	 other	 feature	 is	 a	 resistive	 body	 associated	 with	 a	 near	

vertically	plunging	slab	beneath	the	Alboran	as	has	been	imaged	seismically.	
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Figure Captions 

 

Figure 1. A map of the western Mediterranean showing all locations of MT stations 

used in this study. In black are sites that are not used in this study because of their low 

quality at the time of the inversions, although they will be used in a future inversion 

after being re-processed. Main tectonic features (taking from Platt et al, 2013) have 

been added to the plot, with purple lines indicating the boundaries of the Alboran slab, 

and in black the boundaries between the internal and external areas of Alboran 

subdomains. NF: Nekkor Fault. YF: Yussuf Fault. PF: Palomeras Fault. The inset plot 

on the right shows the extent of the map with site location in red and the actual extent 

of the 3D mesh in blue. 

 

Figure 2. An example of marine data from the Alboran Sea showing the complex, 3D 

characteristics of the MT response functions. Also shown are the responses of the 

starting model with (dashed line) and without (solid lines) conductive sediments in the 

Atlantic, west of Gibraltar. All seafloor responses are impacted by this large 

conductive feature and it is included in subsequent inversion models. Blue 

corresponds to the YX component and red to the XY component. Left plot 

corresponds to apparent resistivities and phases from site MM06 and right plot to site 

RE07. As is the common convention in MT, X indicates the North direction 

(abscissa), and Y the East direction (ordinate). 

 

Figure 3. Example fits of the final inversion model for MMT data at the same sites as 

in Figure 2. 
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Figure 4. A map showing the RMS misfit of the final model at all sites included in 

the inversion. 

 

Figure 5. An E-W cross section through the final inversion model along the main EW 

marine profile. The four conductive and the resistive features discussed in the text are 

as labeled. The estimated location of the Alboran slab has been obtained from Bezada 

et al. [2013] and Palomeras et al. [2013]. The geographical projection used is a 

WGS84 zone 30. 

 

Figure 6. From Left to right and top to bottom, slices correspondent to depth levels 

85 to 93 and level 98. The depth to the top of the slice is indicated within each plot. 

Conductive features C1, C2 and C3 and resistive feature R1 discussed in text are as 

labeled. 

 

Figure 7. An update map for the three sensitivity tests discussed in the text. In (b) and 

(c) the black continuous line represents the shape of the anomaly tested at a depth of 

40 km: C1 for case b) and C2 for case c). 

 

Figure 8. Depth slices through the 3D models (original and perturbed) (top) and 

corresponding cross sections along an EW line passing through the MMT sites 

(bottom). (a) Shows the final inversion model. (b) Shows the model resulting model 

obtained after reinverting, using a starting model in which the shallow conductor 

associated with Neogene volcanics (C1) was removed. The white dash line represents 

the shape of the original anomaly. (c) The same as (b) but for the removal of the 

conductive feature interpreted as a tear in the slab (C2). 
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Figure 9. Middle panel, detailed slice of the MT 3D block at the area where the 

inland upper mantle conductor is located [Rosell et al., 2011]. Right panel, Rayleigh 

wave tomography from Palomeras et al. [2013] showing the coincidence velocity and 

resistivity of the Lithosphere properties in Alboran. The red-scaled dots are 

earthquakes [IGN database, IGN, 2015] with easting restricted to the same location of 

the MT model cut. The projection used in the plot is WGS84 zone 30. 
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Figure 2. An example of marine data from the Alboran Sea showing the complex, 3D 

characteristics of the MT response functions. Also shown are the responses of the 

starting model with (dashed line) and without (solid lines) conductive sediments in the 

Atlantic, west of Gibraltar. All seafloor responses are impacted by this large 

conductive feature and it is included in subsequent inversion models. Blue 

corresponds to the YX component and red to the XY component. Left plot 

corresponds to apparent resistivities and phases from site MM06 and right plot to site 

RE07. As is the common convention in MT, X indicates the North direction 

(abscissa), and Y the East direction (ordinate). 
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Figure 3. Example fits of the final inversion model for MMT data at the same sites as 

in Figure 2. 
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Figure 4. A map showing the RMS misfit of the final model at all sites included in 

the inversion.  
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Figure 5. An E-W cross section through the final inversion model along the main EW 

marine profile. The four conductive and the resistive features discussed in the text are 

as labeled. The estimated location of the Alboran slab has been obtained from Bezada 

et al. [2013] and Palomeras et al. [2013]. The geographical projection used is a 

WGS84 zone 30.  

400
0

405
0

410
0

4150

Nor
thing (k

m)
N

0
50

100
150

200
250

300

D
epth (km

)

0
50

100
150

200
250

300

D
epth (km

)

300
350

400
450

500
550

600

Easting (km)

C2

C1

Alboran
Slab log10()

(Ohm-m)
3.0

2.4

1.8

1.2

0.6

0.0

C3

C4

R1

This article is protected by copyright. All rights reserved.



Gar

	

Figu

85 t

Con

labe

 

rcia	et	al	

ure 6. From

to 93 and lev

nductive fea

eled. 

m Left to rig

vel 98. The

atures C1, C

ght and top t

e depth to th

C2 and C3 a

 

35

to bottom, s

he top of the

nd resistive

slices corres

e slice is ind

e feature R1

MT	in	th

spondent to 

dicated with

 discussed i

he	Alboran

depth level

hin each plo

in text are a

n	Sea	

 

ls 

t. 

as 

This article is protected by copyright. All rights reserved.



Garcia	et	al	 	 MT	in	the	Alboran	Sea	

	 36

 

Figure 7. An update map for the three sensitivity tests discussed in the text. In (b) and 

(c) the black continuous line represents the shape of the anomaly tested at a depth of 

40 km: C1 for case b) and C2 for case c). 
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Figure 8. Depth slices through the 3D models (original and perturbed) (top) and 

corresponding cross sections along an EW line passing through the MMT sites 

(bottom). (a) Shows the final inversion model. (b) Shows the model resulting model 

obtained after reinverting, using a starting model in which the shallow conductor 

associated with Neogene volcanics (C1) was removed. The white dash line represents 

the shape of the original anomaly. (c) The same as (b) but for the removal of the 

conductive feature interpreted as a tear in the slab (C2). 
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Figure 9. Middle panel, detailed slice of the MT 3D block at the area where the 

inland upper mantle conductor is located [Rosell et al., 2011]. Right panel, Rayleigh 

wave tomography from Palomeras et al. [2013] showing the coincidence velocity and 

resistivity of the Lithosphere properties in Alboran. The red-scaled dots are 

earthquakes [IGN database, IGN, 2015] with easting restricted to the same location of 

the MT model cut. The projection used in the plot is WGS84 zone 30. 
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