7 research outputs found

    Characterization of the biofilm forming ability of Staphylococcus pseudintermedius from dogs

    Get PDF
    BACKGROUND: Staphylococcus pseudintermedius is an opportunistic pathogen of dogs and has emerged as a leading cause of skin, wound and surgical site infections worldwide. Methicillin resistance is common and clinical infections as a result of methicillin-resistant S. pseudintermedius (MRSP) pose a clinical challenge. In other staphylococci, biofilm formation has been shown to be a virulence factor for infection, however, it has received little attention in S. pseudintermedius. The objectives of this study were to evaluate the biofilm forming ability of clinical isolates of S. pseudintermedius obtained from dogs using phenotypic and genotypic techniques. RESULTS: 96% (136/140) of S. pseudintermedius isolates were classified as strong or moderate biofilm producers, with the majority of isolates being able to produce biofilm. There was no difference in biofilm formation between MRSP and MSSP (p=0.8), amongst isolates from clinical infections compared with isolates obtained from colonized dogs (p=0.08), and between isolates from sequence type (ST) 71 and ST 68 (P=0.09). icaA was detected in 77.9% (109/140) of isolates and icaD was detected in 75.7% (106/140) of isolates. Scanning electron microscopic evaluation of S. pseudintermedius biofilm production revealed aggregates of cocci and irregularly produced extracellular polymeric matrix. CONCLUSION: The majority of S. pseudintermedius isolates evaluated in this study were able to produce biofilm and this may be an important virulence factor in the rapid emergence of this bacterium in veterinary hospitals worldwide. Further study into the mechanisms of biofilm formation by S. pseudintermedius is warranted

    Comparison of microbial populations in the small intestine, large intestine and feces of healthy horses using terminal restriction fragment length polymorphism

    Get PDF
    Background The composition of the microbiota of the equine intestinal tract is complex. Determining whether the microbial composition of fecal samples is representative of proximal compartments of the digestive tract could greatly simplify future studies. The objectives of this study were to compare the microbial populations of the duodenum, ileum, cecum, colon and rectum (feces) within and between healthy horses, and to determine whether rectal (fecal) samples are representative of proximal segments of the gastrointestinal tract. Intestinal samples were collected from ten euthanized horses. 16S rRNA gene PCR-based TRFLP was used to investigate microbiota richness in various segments of the gastrointestinal tract, and dice similarity indices were calculated to compare the samples. Results Within horses large variations of microbial populations along the gastrointestinal tract were seen. The microbiota in rectal samples was only partially representative of other intestinal compartments. The highest similarity was obtained when feces were compared to the cecum. Large compartmental variations were also seen when microbial populations were compared between six horses with similar dietary and housing management. Conclusion Rectal samples were not entirely representative of intestinal compartments in the small or large intestine. This should be taken into account when designing studies using fecal sampling to assess other intestinal compartments. Similarity between horses with similar dietary and husbandry management was also limited, suggesting that parts of the intestinal microbiota were unique to each animal in this study

    The effects of ambient temperature exposure on feline fecal metabolome

    No full text
    Introduction The fecal metabolome provides insight into overall gastrointestinal and microbial health. Methods for fecal sample storage in metabolomics research vary, however, making comparisons within current literature difficult. This study investigated the effect of ambient temperature exposure on microbial-derived metabolites of feline fecal samples. MethodsFecal samples were collected from 11 healthy cats from a local boarding facility. Samples were manually homogenized and aliquoted. The first aliquot was frozen at -80 degrees C within 1 hour of defecation, and remaining samples were exposed to ambient temperature for 2, 4, 6, 8, 12, and 24 h prior to freezing at -80 degrees C. Fecal metabolites were quantified using H-1 NMR spectroscopy. Fifty metabolites were grouped into six categories (27 amino acids, 8 fatty acids, 5 sugars, 3 alcohols, 2 nitrogenous bases, 5 miscellaneous). ResultsConcentrations of 20 out of 50 metabolites significantly differed due to ambient temperature exposure (7 amino acids, 6 fatty acids, 2 alcohols, 1 nitrogenous base, 4 miscellaneous). The earliest detected changes occurred 6 h post-defecation for cadaverine and fumaric acid. DiscussionThis study shows ambient temperature exposure alters the composition of the feline fecal metabolome, but short-term (up to 4 h) exposure prior to storage in the freezer seems to be acceptable

    Longitudinal study of Clostridium difficile and antimicrobial susceptibility of Escherichia coli in healthy horses in a community setting

    Full text link
    Point prevalence studies have reported carriage rates of enteric pathogens in healthy horses, but longitudinal data are lacking. Commensal E. coli is an indicator organism to evaluate antimicrobial resistance of enteric bacteria, yet there are limited data for horses. The objectives of this study were to investigate and molecularly characterize isolates of Clostridium difficile, Clostridium perfringens and Salmonella, collected sequentially over a one year period, and to determine the antibiotic susceptibility profile for E. coli. Fecal samples were collected monthly from 25 adult horses for one year. Selective cultures were performed for all above bacteria. C. difficile isolates were characterized via PCR toxin gene profiling and ribotyping. Broth microdilution was performed to assess antimicrobial susceptibility profiles of E. coli. Toxigenic Clostridium difficile was isolated from 15/275 (5.45%) samples from 10/25 (40%) horses. Four horses were positive at multiple sampling times but different ribotypes were found in three. Ribotypes included 078 (n=6), 001 (n=6) and C (n=3). C. perfringens was not isolated, nor was Salmonella. E. coli was isolated from 232/300 (77%) fecal samples. Resistance to ≥ 1 and ≥ 3 antimicrobials was present in 31/232 (13.4%) and 6/232 (2.6%) respectively. Only two horses shed the same strain of toxigenic C. difficile for more than one month, indicating that shedding is transient. The high number of ribotype 078 is consistent with recent emergence of this strain in the local horse population. The low prevalence of antibiotic resistance in commensal E. coli suggests that healthy horses are not likely a major reservoir of resistance for enteric bacteria

    Breathing challenges in Rett Syndrome: Lessons learned from humans and animal models

    No full text
    Breathing disturbances are a major challenge in Rett Syndrome (RTT). These disturbances are more pronounced during wakefulness; but irregular breathing occurs also during sleep. During the day patients can exhibit alternating bouts of hypoventilation and irregular hyperventilation. But there is significant individual variability in severity, onset, duration and type of breathing disturbances. Research in mouse models of RTT suggests that different areas in the ventrolateral medulla and pons give rise to different aspects of this breathing disorder. Pre-clinical experiments in mouse models that target different neuromodulatory and neurotransmitter receptors and MeCP2 function within glia cells can partly reverse breathing abnormalities. The success in animal models raises optimism that one day it will be possible to control or potentially cure the devastating symptoms also in human patients with RTT

    Staphylococcus aureus CC398:Host Adaptation and Emergence of Methicillin Resistance in Livestock

    Get PDF
    Since its discovery in the early 2000s, methicillin-resistant Staphylococcus aureus (MRSA) clonal complex 398 (CC398) has become a rapidly emerging cause of human infections, most often associated with livestock exposure. We applied whole-genome sequence typing to characterize a diverse collection of CC398 isolates (n = 89), including MRSA and methicillin-susceptible S. aureus (MSSA) from animals and humans spanning 19 countries and four continents. We identified 4,238 single nucleotide polymorphisms (SNPs) among the 89 core genomes. Minimal homoplasy (consistency index = 0.9591) was detected among parsimony-informative SNPs, allowing for the generation of a highly accurate phylogenetic reconstruction of the CC398 clonal lineage. Phylogenetic analyses revealed that MSSA from humans formed the most ancestral clades. The most derived lineages were composed predominantly of livestock-associated MRSA possessing three different staphylococcal cassette chromosome mec element (SCCmec) types (IV, V, and VII-like) including nine subtypes. The human-associated isolates from the basal clades carried phages encoding human innate immune modulators that were largely missing among the livestock-associated isolates. Our results strongly suggest that livestock-associated MRSA CC398 originated in humans as MSSA. The lineage appears to have undergone a rapid radiation in conjunction with the jump from humans to livestock, where it subsequently acquired tetracycline and methicillin resistance. Further analyses are required to estimate the number of independent genetic events leading to the methicillin-resistant sublineages, but the diversity of SCCmec subtypes is suggestive of strong and diverse antimicrobial selection associated with food animal production. IMPORTANCE Modern food animal production is characterized by densely concentrated animals and routine antibiotic use, which may facilitate the emergence of novel antibiotic-resistant zoonotic pathogens. Our findings strongly support the idea that livestock-associated MRSA CC398 originated as MSSA in humans. The jump of CC398 from humans to livestock was accompanied by the loss of phage-carried human virulence genes, which likely attenuated its zoonotic potential, but it was also accompanied by the acquisition of tetracycline and methicillin resistance. Our findings exemplify a bidirectional zoonotic exchange and underscore the potential public health risks of widespread antibiotic use in food animal production
    corecore