165 research outputs found

    Method of Suppressing Sublimation in Advanced Thermoelectric Devices

    Get PDF
    A method of applying a physical barrier to suppress thermal decomposition near a surface of a thermoelectric material including applying a continuous metal foil to a predetermined portion of the surface of the thermoelectric material, physically binding the continuous metal foil to the surface of the thermoelectric material using a binding member, and heating in a predetermined atmosphere the applied and physically bound continuous metal foil and the thermoelectric material to a sufficient temperature in order to promote bonding between the continuous metal foil and the surface of the thermoelectric material. The continuous metal foil forms a physical barrier to enclose a predetermined portion of the surface. Thermal decomposition is suppressed at the surface of the thermoelectric material enclosed by the physical barrier when the thermoelectric element is in operation

    Characterizing the degradation of alginate hydrogel for use in multilumen scaffolds for spinal cord repair

    Full text link
    Alginate was studied as a degradable nerve guidance scaffold material in vitro and in vivo. In vitro degradation rates were determined using rheology to measure the change in shear modulus vs time. The shear modulus decreased from 155 kPa to 5 kPa within 2 days; however, alginate samples maintained their superficial geometry for over 28 days. The degradation behavior was supported by materials characterization data showing alginate consisted of high internal surface area (400 m2/g), which likely facilitated the release of cross‐linking cations resulting in the rapid decrease in shear modulus. To assess the degradation rate in vivo, multilumen scaffolds were fabricated using a fiber templating technique. The scaffolds were implanted in a 2‐mm‐long T3 full transection rodent spinal cord lesion model for 14 days. Although there was some evidence of axon guidance, in general, alginate scaffolds degraded before axons could grow over the 2‐mm‐long lesion. Enabling alginate‐based scaffolds for nerve repair will likely require approaches to slow its degradation. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 611–619, 2016.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/137597/1/jbma35600.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/137597/2/jbma35600_am.pd

    System and method for suppressing sublimation using opacified aerogel

    Get PDF
    The present invention relates to a castable, aerogel-based, ultra-low thermal conductivity opacified insulation to suppress sublimation. More specifically, the present invention relates to an aerogel opacified with various opacifying or reflecting constituents to suppress sublimation and provide thermal insulation in thermoelectric modules. The opacifying constituent can be graded within the aerogel for increased sublimation suppression, and the density of the aerogel can similarly be graded to achieve optimal thermal insulation and sublimation suppression

    Tenecteplase for ST-elevation myocardial infarction in a patient treated with drotrecogin alfa (activated) for severe sepsis: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Drotrecogin alfa (activated) (DrotAA), an activated protein C, promotes fibrinolysis in patients with severe sepsis. There are no reported cases or studies that address the diagnosis and treatment of myocardial infarction in septic patients treated with DrotAA.</p> <p>Case presentation</p> <p>A 59-year-old Caucasian man with septic shock secondary to community-acquired pneumonia treated with DrotAA, subsequently developed an ST-elevation myocardial infarction 12 hours after starting DrotAA. DrotAA was stopped and the patient was given tenecteplase thrombolysis resulting in complete resolution of ST-elevation and no adverse bleeding events. DrotAA was restarted to complete the 96-hour course. The sepsis resolved and the patient was discharged from hospital.</p> <p>Conclusion</p> <p>In patients with severe sepsis or septic shock complicated by myocardial infarction, it is difficult to determine if the myocardial infarction is an isolated event or caused by the sepsis process. The efficacy and safety of tenecteplase thrombolysis in septic patients treated with DrotAA need further study.</p

    Mg/O<sub>2</sub> Battery Based on the Magnesium-Aluminum Chloride Complex (MACC) Electrolyte

    Get PDF
    Mg/O<sub>2</sub> cells employing a MgCl<sub>2</sub>/AlCl<sub>3</sub>/DME (MACC/DME) electrolyte are cycled and compared to cells with modified Grignard electrolytes, showing that performance of magnesium/oxygen batteries depends strongly on electrolyte composition. Discharge capacity is far greater for MACC/DME-based cells, while rechargeability in these systems is severely limited. The Mg/O<sub>2</sub>-MACC/DME discharge product comprises a mixture of Mg­(ClO<sub>4</sub>)<sub>2</sub> and MgCl<sub>2</sub>, with the latter likely formed from slow decomposition of the former. The presence of Cl in these compounds suggests that the electrolyte participates in the cell reaction or reacts readily with the initial electrochemical products. A rate study suggests that O<sub>2</sub> diffusion in the electrolyte limits discharge capacities at higher currents. Formation of an insulating product film on the positive electrodes of Mg/O<sub>2</sub>-MACC/DME cells following deep discharge increases cell impedance substantially and likely explains the poor rechargeability. An additional impedance rise consistent with film formation on the Mg negative electrode suggests the presence of detrimental O<sub>2</sub> crossover. Minimizing O<sub>2</sub> crossover and bypassing charge transfer through the discharge product would improve battery performance

    Starburst Energy Feedback Seen through HCO+/HOC+Emission in NGC 253 from ALCHEMI

    Get PDF
    Molecular abundances are sensitive to the UV photon flux and cosmic-ray ionization rate. In starburst environments, the effects of high-energy photons and particles are expected to be stronger. We examine these astrochemical signatures through multiple transitions of HCO+ and its metastable isomer HOC+ in the center of the starburst galaxy NGC 253 using data from the Atacama Large Millimeter/submillimeter Array large program ALMA Comprehensive High-resolution Extragalactic Molecular inventory. The distribution of the HOC+(1-0) integrated intensity shows its association with "superbubbles,"cavities created either by supernovae or expanding H ii regions. The observed HCO+/HOC+ abundance ratios are ∼10-150, and the fractional abundance of HOC+ relative to H2 is ∼1.5 × 10-11-6 × 10-10, which implies that the HOC+ abundance in the center of NGC 253 is significantly higher than in quiescent spiral arm dark clouds in the Galaxy and the Galactic center clouds. Comparison with chemical models implies either an interstellar radiation field of G 0 ⪆ 103 if the maximum visual extinction is ⪆5, or a cosmic-ray ionization rate of ζ ⪆ 10-14 s-1 (3-4 orders of magnitude higher than that within clouds in the Galactic spiral arms) to reproduce the observed results. From the difference in formation routes of HOC+, we propose that a low-excitation line of HOC+ traces cosmic-ray dominated regions, while high-excitation lines trace photodissociation regions. Our results suggest that the interstellar medium in the center of NGC 253 is significantly affected by energy input from UV photons and cosmic rays, sources of energy feedback.N.H. acknowledges support from JSPS KAKENHI grant No. JP21K03634. K.S. has been supported by grants MOST 108-2112-M-001-015 and 109- 2112-M-001-020 from the Ministry of Science and Technology, Taiwan. Y.N. is supported by the NAOJ ALMA Scientific Research grant No. 2017-06B. V.M.R. and L.C. are funded by the Comunidad de Madrid through the Atracción de Talento Investigador (Doctores con experiencia) Grant (COOL: Cosmic Origins Of Life; 2019-T1/TIC-15379)

    Simultaneous siRNA Targeting of Src and Downstream Signaling Molecules Inhibit Tumor Formation and Metastasis of a Human Model Breast Cancer Cell Line

    Get PDF
    Src and signaling molecules downstream of Src, including signal transducer and activator of transcription 3 (Stat3) and cMyc, have been implicated in the development, maintenance and/or progression of several types of human cancers, including breast cancer. Here we report the ability of siRNA-mediated Src knock-down alone, and simultaneous knock-down of Src and Stat3 and/or cMyc to inhibit the neoplastic phenotype of a highly metastatic human model breast cancer cell line, MDA-MB-435S, a widely used model for breast cancer research.Src and its downstream signaling partners were specifically targeted and knocked-down using siRNA. Changes in the growth properties of the cultured cancer cells/tumors were documented using assays that included anchorage-dependent and -independent (in soft agar) cell growth, apoptosis, and both primary and metastatic tumor growth in the mouse tumor model. siRNA-mediated Src knock-down alone, and simultaneous knock-down of Src and Stat3 and/or cMyc inhibited the neoplastic phenotype of a highly metastatic human model breast cancer cell line, MDA-MB-435S. This knock-down resulted in reduced growth in monolayer and soft agar cultures, and a reduced ability to form primary tumors in NOD/SCID mice. In addition, direct intra-tumoral injection of siRNAs targeting these signaling molecules resulted in a substantial inhibition of tumor metastases as well as of primary tumor growth. Simultaneous knock-down of Src and Stat3, and/or Myc exhibited the greatest effects resulting in substantial inhibition of primary tumor growth and metastasis.These findings demonstrate the effectiveness of simultaneous targeting of Src and the downstream signaling partners Stat3 and/or cMyc to inhibit the growth and oncogenic properties of a human cancer cell line. This knowledge may be very useful in the development of future therapeutic approaches involving targeting of specific genes products involved in tumor growth and metastasis

    Evolution of Symbiotic Bacteria in the Distal Human Intestine

    Get PDF
    The adult human intestine contains trillions of bacteria, representing hundreds of species and thousands of subspecies. Little is known about the selective pressures that have shaped and are shaping this community's component species, which are dominated by members of the Bacteroidetes and Firmicutes divisions. To examine how the intestinal environment affects microbial genome evolution, we have sequenced the genomes of two members of the normal distal human gut microbiota, Bacteroides vulgatus and Bacteroides distasonis, and by comparison with the few other sequenced gut and non-gut Bacteroidetes, analyzed their niche and habitat adaptations. The results show that lateral gene transfer, mobile elements, and gene amplification have played important roles in affecting the ability of gut-dwelling Bacteroidetes to vary their cell surface, sense their environment, and harvest nutrient resources present in the distal intestine. Our findings show that these processes have been a driving force in the adaptation of Bacteroidetes to the distal gut environment, and emphasize the importance of considering the evolution of humans from an additional perspective, namely the evolution of our microbiomes
    corecore