2,050 research outputs found
School quality, safe schools: an emperical analysis
While the vast majority of US public schools are safe, problems exist that not only threaten the teaching and learning environment, but cause substantive problems for educators. Sensing that certain troubling student behaviors can lead to greater problems, schools have implemented many safe school programs and strategies. Unfortunately, these approaches are viewed as "add-ons" by the education community; that is, additional activities and work for them. What is needed is a framework where safe school programs and strategies are fully integrated into the schooling process. Such a framework exists, and the purpose of our paper has been to integrate the safe schools literature with the quality schools literature in developing such a framework.
After reviewing the school quality and school safety literature we extracted main concepts from both bodies of research, and led to an overriding proposition. The proposition suggests that safe school activities can be successful if they are part of the larger task of developing and sustaining quality schools.
An analysis of school quality and safety data collected by the NEA tentatively confirms our main proposition. We found that school quality is significantly related to school safety. Additional findings suggest that safety varies across schools, middle schools have more problems than either elementary or high schools, and that the effect of school quality on safety does not depend on grade level. Taken as a whole, the effect of school quality on school safety appears to be very robus
Advances in Solid State Joining of Haynes 230 High Temperature Alloy
The J-2X engine is being designed for NASA s new class of crew and launch vehicles, the Ares I and Ares V. The J-2X is a LOX/Hydrogen upper stage engine with 294,000 lbs of thrust and a minimum Isp of 448 seconds. As part of the design criteria to meet the performance requirements a large film-cooled nozzle extension is being designed to further expand the hot gases and increases the specific impulse. The nozzle extension is designed using Haynes 230, a nickel-chromium-tungsten-molybdenum superalloy. The alloy was selected for its high strength at elevated temperatures and resistance to hydrogen embrittlement. The nozzle extension is manufactured from Haynes 230 plate spun-forged to form the contour and chemically-milled pockets for weight reduction. Currently fusion welding is being evaluated for joining the panels which are then mechanically etched and thinned to required dimensions for the nozzle extension blank. This blank is then spun formed into the parabolic geometry required for the nozzle. After forming the nozzle extension, weight reduction pockets are chemically milled into the nozzle. Fusion welding of Haynes results in columnar grains which are prone to hot cracking during forming processes. This restricts the ability to use spin forging to produce the nozzle contour. Solid state joining processes are being pursued as an alternative process to produce a structure more amenable to spin forming. Solid state processes have been shown to produce a refined grain structure within the joint regions as illustrated in Figure 1. Solid state joining processes include friction stir welding (FSW) and a patented modification termed thermal stir welding (TSW). The configuration of TSWing utilizes an induction coil to preheat the material minimizing the burden on the weld tool extending its life. This provides the ability to precisely select and control the temperature. The work presented in this presentation investigates the feasibility of joining the Haynes 230 alloy using the solid state welding processes of FSW and TSW. Process descriptions and attributes of each weld process will be presented. Weld process set-up and welding techniques will be discussed leading to the challenges experienced in joining the superalloy. Mechanical property data will also be presented
The MUSCLES Treasury Survey. V. FUV Flares on Active and Inactive M Dwarfs
M dwarf stars are known for their vigorous flaring. This flaring could impact
the climate of orbiting planets, making it important to characterize M dwarf
flares at the short wavelengths that drive atmospheric chemistry and escape. We
conducted a far-ultraviolet flare survey of 6 M dwarfs from the recent MUSCLES
(Measurements of the Ultraviolet Spectral Characteristics of Low-mass
Exoplanetary Systems) observations, as well as 4 highly-active M dwarfs with
archival data. When comparing absolute flare energies, we found the
active-M-star flares to be about 10 more energetic than inactive-M-star
flares. However, when flare energies were normalized by the star's quiescent
flux, the active and inactive samples exhibited identical flare distributions,
with a power-law index of - (cumulative distribution). The
rate and distribution of flares are such that they could dominate the FUV
energy budget of M dwarfs, assuming the same distribution holds to flares as
energetic as those cataloged by Kepler and ground-based surveys. We used the
observed events to create an idealized model flare with realistic spectral and
temporal energy budgets to be used in photochemical simulations of exoplanet
atmospheres. Applied to our own simulation of direct photolysis by photons
alone (no particles), we find the most energetic observed flares have little
effect on an Earth-like atmosphere, photolyzing 0.01% of the total O
column. The observations were too limited temporally (73 h cumulative exposure)
to catch rare, highly energetic flares. Those that the power-law fit predicts
occur monthly would photolyze 1% of the O column and those it
predicts occur yearly would photolyze the full O column. Whether such
energetic flares occur at the rate predicted is an open question.Comment: Accepted to ApJ. v2 fixed some transposed errors, added PDF To
Spectroscopy of Quasar Candidates from SDSS Commissioning Data
The Sloan Digital Sky Survey has obtained images in five broad-band colors
for several hundred square degrees. We present color-color diagrams for stellar
objects, and demonstrate that quasars are easily distinguished from stars by
their distinctive colors. Follow-up spectroscopy in less than ten nights of
telescope time has yielded 22 new quasars, 9 of them at , and one with
, the second highest-redshift quasar yet known. Roughly 80% of the
high-redshift quasar candidates selected by color indeed turn out to be
high-redshift quasars.Comment: 4 pages, 3 figures, to appear in the proceedings of "After the Dark
Ages: When Galaxies were Young (the Universe at 2<z<5)", 9th Annual October
Astrophysics Conference in Marylan
Photometric redshifts from reconstructed QSO templates
From SDSS commissioning photometric and spectroscopic data, we investigate
the utility of photometric redshift techniques to the task of estimating QSO
redshifts. We consider empirical methods (e.g. nearest-neighbor searches and
polynomial fitting), standard spectral template fitting and hybrid approaches
(i.e. training spectral templates from spectroscopic and photometric
observations of QSOs). We find that in all cases, due to the presence of strong
emission-lines within the QSO spectra, the nearest-neighbor and template
fitting methods are superior to the polynomial fitting approach. Applying a
novel reconstruction technique, we can, from the SDSS multicolor photometry,
reconstruct a statistical representation of the underlying SEDs of the SDSS
QSOs. Although, the reconstructed templates are based on only broadband
photometry the common emission lines present within the QSO spectra can be
recovered in the resulting spectral energy distributions. The technique should
be useful in searching for spectral differences among QSOs at a given redshift,
in searching for spectral evolution of QSOs, in comparing photometric redshifts
for objects beyond the SDSS spectroscopic sample with those in the well
calibrated photometric redshifts for objects brighter than 20th magnitude and
in searching for systematic and time variable effects in the SDSS broad band
photometric and spectral photometric calibrations.Comment: 21 pages, 9 figures, LaTeX AASTeX, submitted to A
Exploring the Local Milky Way: M Dwarfs as Tracers of Galactic Populations
We have assembled a spectroscopic sample of low-mass dwarfs observed as part
of the Sloan Digital Sky Survey along one Galactic sightline, designed to
investigate the observable properties of the thin and thick disks. This sample
of ~7400 K and M stars also has measured ugriz photometry, proper motions, and
radial velocities. We have computed UVW space motion distributions, and
investigate their structure with respect to vertical distance from the Galactic
Plane. We place constraints on the velocity dispersions of the thin and thick
disks, using two-component Gaussian fits. We also compare these kinematic
distributions to a leading Galactic model. Finally, we investigate other
possible observable differences between the thin and thick disks, such as
color, active fraction and metallicity.Comment: 11 pages, 12 figures, Accepted by A
The Discovery of a Second Field Methane Brown Dwarf from Sloan Digital Sky Survey Commissioning Data
We report the discovery of a second field methane brown dwarf from the
commissioning data of the Sloan Digital Sky Survey (SDSS). The object, SDSS
J134646.45-003150.4 (SDSS 1346-00), was selected because of its very red color
and stellar appearance. Its spectrum between 0.8-2.5 mic is dominated by strong
absorption bands of H_2O and CH_4 and closely mimics those of Gliese 229B and
SDSS 162414.37+002915.6 (SDSS 1624+00), two other known methane brown dwarfs.
SDSS 1346-00 is approximately 1.5 mag fainter than Gliese 229B, suggesting that
it lies about 11 pc from the sun. The ratio of flux at 2.1 mic to that at 1.27
mic is larger for SDSS 1346-00 than for Gliese 229B and SDSS 1624+00, which
suggests that SDSS 1346-00 has a slightly higher effective temperature than the
others. Based on a search area of 130 sq. deg. and a detection limit of z* =
19.8, we estimate a space density of 0.05 pc^-3 for methane brown dwarfs with
T_eff ~ 1000 K in the 40 pc^3 volume of our search. This estimate is based on
small-sample statistics and should be treated with appropriate caution.Comment: 9 pages, 3 figures, AASTeX, to appear in ApJ Letters, authors list
update
NYU-VAGC: a galaxy catalog based on new public surveys
Here we present the New York University Value-Added Galaxy Catalog
(NYU-VAGC), a catalog of local galaxies (mostly below a redshift of about 0.3)
based on a set of publicly-released surveys (including the 2dFGRS, 2MASS, PSCz,
FIRST, and RC3) matched to the Sloan Digital Sky Survey (SDSS) Data Release 2.
Excluding areas masked by bright stars, the photometric sample covers 3514
square degrees and the spectroscopic sample covers 2627 square degrees (with
about 85% completeness). Earlier, proprietary versions of this catalog have
formed the basis of many SDSS investigations of the power spectrum, correlation
function, and luminosity function of galaxies. We calculate and compile derived
quantities (for example, K-corrections and structural parameters for galaxies).
The SDSS catalog presented here is photometrically recalibrated, reducing
systematic calibration errors across the sky from about 2% to about 1%. We
include an explicit description of the geometry of the catalog, including all
imaging and targeting information as a function of sky position. Finally, we
have performed eyeball quality checks on a large number of objects in the
catalog in order to flag deblending and other errors. This catalog is
complementary to the SDSS Archive Servers, in that NYU-VAGC's calibration,
geometrical description, and conveniently small size are specifically designed
for studying galaxy properties and large-scale structure statistics using the
SDSS spectroscopic catalog.Comment: accepted by AJ; full resolution version available at
http://sdss.physics.nyu.edu/vagc/va_paper.ps; data files available at
http://sdss.physics.nyu.edu/vagc
Additional Ultracool White Dwarfs Found in the Sloan Digital Sky Survey
We identify seven new ultracool white dwarfs discovered in the Sloan Digital
Sky Survey (SDSS). The SDSS photometry, spectra, and proper motions are
presented, and additional BVRI data are given for these and other previously
discovered ultracool white dwarfs. The observed colors span a remarkably wide
range, qualitatively similar to colors predicted by models for very cool white
dwarfs. One of the new stars (SDSS J1251+44) exhibits strong collision-induced
absorption (CIA) in its spectra, while the spectra and colors of the other six
are consistent with mild CIA. Another of the new discoveries (SDSS J2239+00A)
is part of a binary system -- its companion is also a cool white dwarf, and
other data indicate that the companion exhibits an infrared flux deficiency,
making this the first binary system composed of two CIA white dwarfs. A third
discovery (SDSS J0310-00) has weak Balmer emission lines. The proper motions of
all seven stars are consistent with membership in the disk or thick disk.Comment: Accepted for Astrophysical Journal. 16 pages (includes 3 figures
High-Redshift Quasars Found in Sloan Digital Sky Survey Commissioning Data IV: Luminosity Function from the Fall Equatorial Stripe Sampl
This is the fourth paper in a series aimed at finding high-redshift quasars
from five-color imaging data taken along the Celestial Equator by the SDSS.
during its commissioning phase. In this paper, we use the color-selected sample
of 39 luminous high-redshift quasars presented in Paper III to derive the
evolution of the quasar luminosity function over the range of 3.6<z<5.0, and
-27.5<M_1450<-25.5 (Omega=1, H_0=50 km s^-1 Mpc^-1). We use the selection
function derived in Paper III to correct for sample incompleteness. The
luminosity function is estimated using three different methods: (1) the 1/V_a
estimator; (2) a maximum likelihood solution, assuming that the density of
quasars depends exponentially on redshift and as a power law in luminosity and
(3) Lynden-Bell's non-parametric C^- estimator. All three methods give
consistent results. The luminous quasar density decreases by a factor of ~ 6
from z=3.5 to z=5.0, consistent with the decline seen from several previous
optical surveys at z<4.5. The luminosity function follows psi(L) ~ L^{-2.5} for
z~4 at the bright end, significantly flatter than the bright end luminosity
function psi(L) \propto L^{-3.5} found in previous studies for z<3, suggesting
that the shape of the quasar luminosity function evolves with redshift as well,
and that the quasar evolution from z=2 to 5 cannot be described as pure
luminosity evolution. Possible selection biases and the effect of dust
extinction on the redshift evolution of the quasar density are also discussed.Comment: AJ accepted, with minor change
- …