1,401 research outputs found

    Biogenesis of a Bacterial Organelle: The Carboxysome Assembly Pathway

    Get PDF
    SummaryThe carboxysome is a protein-based organelle for carbon fixation in cyanobacteria, keystone organisms in the global carbon cycle. It is composed of thousands of subunits including hexameric and pentameric proteins that form a shell to encapsulate the enzymes ribulose 1,5-bisphosphate carboxylase/oxygenase and carbonic anhydrase. Here, we describe the stages of carboxysome assembly and the requisite gene products necessary for progression through each. Our results demonstrate that, unlike membrane-bound organelles of eukaryotes, in carboxysomes the interior of the compartment forms first, at a distinct site within the cell. Subsequently, shell proteins encapsulate this procarboxysome, inducing budding and distribution of functional organelles within the cell. We propose that the principles of carboxysome assembly that we have uncovered extend to diverse bacterial microcompartments

    Optimization of an Air Core Dual Halbach Array Axial Flux Rim Drive for Electric Aircraft

    Get PDF
    The anticipated development of the on-demand-mobility (ODM) market has accelerated the development of electric aircraft. Most proposed electric aircraft have propulsion systems that consist of fans directly driven by electric motors. The lower complexity of these propulsion systems opens the door to more custom propulsion system designs that are tailored to a given aircraft and its mission. This paper represents initial steps in the development of an electric propulsion system design code. A proof of concept version of the code is presented. The proof of concept version of the code is for the design of an axial flux rim driven propulsion system. NASA's all electric aircraft X-57, is used as a case study for this design code. The results of this case study are used to discuss the feasibility and potential benefits of using an axial flux rim driven propulsor on X-57. The final result of the case study shows a potential 4km increase in range over the current design

    Plant Glutathione Biosynthesis: Diversity in Biochemical Regulation and Reaction Products

    Get PDF
    In plants, exposure to temperature extremes, heavy metal-contaminated soils, drought, air pollutants, and pathogens results in the generation of reactive oxygen species that alter the intracellular redox environment, which in turn influences signaling pathways and cell fate. As part of their response to these stresses, plants produce glutathione. Glutathione acts as an anti-oxidant by quenching reactive oxygen species, and is involved in the ascorbate–glutathione cycle that eliminates damaging peroxides. Plants also use glutathione for the detoxification of xenobiotics, herbicides, air pollutants (sulfur dioxide and ozone), and toxic heavy metals. Two enzymes catalyze glutathione synthesis: glutamate–cysteine ligase, and glutathione synthetase. Glutathione is a ubiquitous protective compound in plants, but the structural and functional details of the proteins that synthesize it, as well as the potential biochemical mechanisms of their regulation, have only begun to be explored. As discussed here, the core reactions of glutathione synthesis are conserved across various organisms, but plants have diversified both the regulatory mechanisms that control its synthesis and the range of products derived from this pathway. Understanding the molecular basis of glutathione biosynthesis and its regulation will expand our knowledge of this component in the plant stress response network

    A genetically tagged Psb27 protein allows purification of two consecutive photosystem II (PSII) assembly intermediates in Synechocystis 6803, a cyanobacterium

    Get PDF
    Photosystem II (PSII) is a large membrane bound molecular machine that catalyzes light-driven oxygen evolution from water. PSII constantly undergoes assembly and disassembly because of the unavoidable damage that results from its normal photochemistry. Thus, under physiological conditions, in addition to the active PSII complexes, there are always PSII subpopulations incompetent of oxygen evolution, but are in the process of undergoing elaborate biogenesis and repair. These transient complexes are difficult to characterize because of their low abundance, structural heterogeneity, and thermodynamic instability. In this study, we show that a genetically tagged Psb27 protein allows for the biochemical purification of two monomeric PSII assembly intermediates, one with an unprocessed form of D1 (His27ΔctpAPSII) and a second one with a mature form of D1 (His27PSII). Both forms were capable of light-induced charge separation, but unable to photooxidize water, largely because of the absence of a functional tetramanganese cluster. Unexpectedly, there was a significant amount of the extrinsic lumenal PsbO protein in the His27PSII, but not in the His27ΔctpAPSII complex. In contrast, two other lumenal proteins, PsbU and PsbV, were absent in both of these PSII intermediate complexes. Additionally, the only cytoplasmic extrinsic protein, Psb28 was detected in His27PSII complex. Based on these data, we have presented a refined model of PSII biogenesis, illustrating an important role of Psb27 as a gate-keeper during the complex assembly process of the oxygen-evolving centers in PSII. © 2011 by The American Society for Biochemistry and Molecular Biology, Inc

    Biochemical characterization of predicted Precambrian RuBisCO

    Get PDF
    The antiquity and global abundance of the enzyme, RuBisCO, attests to the crucial and longstanding role it has played in the biogeochemical cycles of Earth over billions of years. The counterproductive oxygenase activity of RuBisCO has persisted over billions of years of evolution, despite its competition with the carboxylase activity necessary for carbon fixation, yet hypotheses regarding the selective pressures governing RuBisCO evolution have been limited to speculation. Here we report the resurrection and biochemical characterization of ancestral RuBisCOs, dating back to over one billion years ago (Gyr ago). Our findings provide an ancient point of reference revealing divergent evolutionary paths taken by eukaryotic homologues towards improved specificity for CO2, versus the evolutionary emphasis on increased rates of carboxylation observed in bacterial homologues. Consistent with these distinctions, in vivo analysis reveals the propensity of ancestral RuBisCO to be encapsulated into modern-day carboxysomes, bacterial organelles central to the cyanobacterial CO2 concentrating mechanism

    Colour scales with climate in North American ratsnakes: a test of the thermal melanism hypothesis using community science images

    Get PDF
    Animal colour is a complex trait shaped by multiple selection pressures that can vary across geography. The thermal melanism hypothesis predicts that darker coloration is beneficial to animals in colder regions because it allows for more rapid solar absorption. Here, we use community science images of three closely related species of North American ratsnakes (genus Pantherophis) to examine if climate predicts colour variation across range-wide scales. We predicted that darker individuals are found in colder regions and higher elevations, in accordance with the thermal melanism hypothesis. Using an unprecedented dataset of over 8000 images, we found strong support for temperature as a key predictor of darker colour, supporting thermal melanism. We also found that elevation and precipitation are predictive of colour, but the direction and magnitude of these effects were more variable across species. Our study is the first to quantify colour variation in Pantherophis ratsnakes, highlighting the value of community science images for studying range-wide colour variation

    NLL{'} resummation of jet mass

    Get PDF
    Starting from a factorization theorem in effective field theory, we present resummed results for two non-global observables: the invariant-mass distribution of jets and the energy distribution outside jets. Our results include the full next-to-leading-order corrections to the hard, jet and soft functions and are implemented in a parton-shower framework which generates the renormalization-group running in the effective theory. The inclusion of these matching corrections leads to an improved description of the data and reduced theoretical uncertainties. They will have to be combined with two-loop running in the future, but our results are an important first step towards the higher-logarithmic resummation of non-global observables.Comment: 32 pages, 12 figures. v2: journal versio

    Microscope 2.0: An Augmented Reality Microscope with Real-time Artificial Intelligence Integration

    Full text link
    The brightfield microscope is instrumental in the visual examination of both biological and physical samples at sub-millimeter scales. One key clinical application has been in cancer histopathology, where the microscopic assessment of the tissue samples is used for the diagnosis and staging of cancer and thus guides clinical therapy. However, the interpretation of these samples is inherently subjective, resulting in significant diagnostic variability. Moreover, in many regions of the world, access to pathologists is severely limited due to lack of trained personnel. In this regard, Artificial Intelligence (AI) based tools promise to improve the access and quality of healthcare. However, despite significant advances in AI research, integration of these tools into real-world cancer diagnosis workflows remains challenging because of the costs of image digitization and difficulties in deploying AI solutions. Here we propose a cost-effective solution to the integration of AI: the Augmented Reality Microscope (ARM). The ARM overlays AI-based information onto the current view of the sample through the optical pathway in real-time, enabling seamless integration of AI into the regular microscopy workflow. We demonstrate the utility of ARM in the detection of lymph node metastases in breast cancer and the identification of prostate cancer with a latency that supports real-time workflows. We anticipate that ARM will remove barriers towards the use of AI in microscopic analysis and thus improve the accuracy and efficiency of cancer diagnosis. This approach is applicable to other microscopy tasks and AI algorithms in the life sciences and beyond
    corecore