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1 Introduction

Up to now, higher-logarithmic resummations of collider observables have only been per-

formed for the narrow class of global observables which constrain radiation uniformly over

the entire phase space. This category includes very inclusive observables such as selected

event shapes, but it excludes all observables with hard phase-space cuts or a fixed number

of jets. In recent years, a lot of progress was made in the theoretical analysis of non-global

observables [1–17]. This includes work on the structure of higher logarithms as well as

studies of leading logarithms beyond the large-Nc limit.

In this paper we start the computation of higher-logarithmic corrections for non-global

observables by analyzing two simple observables, the jet mass and the interjet energy flow,

and presenting resummed predictions which include the full one-loop corrections to the

relevant hard scattering processes, as well as the associated jet and soft functions. In the

effective-theory framework we use for resummation [6, 8], these correspond to matching
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corrections and they will need to be supplemented by corrections to the renormalization-

group (RG) running in the future to arrive at a complete higher-logarithmic treatment of

the non-global part.

Our main goal in the present work is to develop the Monte Carlo methods to include

these corrections as a step towards full higher-logarithmic resummation, but it is also inter-

esting to study their numerical size, since they have never been computed for non-global ob-

servables and often dominate numerically in the global case. It is customary to add a prime

to the logarithmic accuracy to indicate the presence of higher-order matching corrections.

In this notation our next-to-leading-logarithmic results for the jet mass have NLL′ accuracy.

In refs. [8, 10] we have derived a factorization formula for interjet energy flow and light-

jet mass. The key element is the presence of multi-Wilson-line operators which generate

the intricate pattern of Non-Global Logarithms (NGLs). Explicitly, the result for interjet

energy flow at a lepton collider has the form

σ(Q,Q0) =
∞∑
m=2

〈
Hm({n}, Q, µ)⊗ Sm({n}, Q0, µ)

〉
, (1.1)

where Q is the center-of-mass energy, and Q0 = βQ is the energy scale above which we

veto energy in the gap outside the jet cones. For simplicity, we choose the jet axis along

the thrust axis. The above factorization formula neglects power corrections from O(β)

terms. The hard functions Hm describe hard radiation inside the jet cone, and their

characteristic scale is Q since radiation inside the cones is unrestricted. The index m rep-

resents the number of hard partons inside the jet, which propagate along the directions

{n} = {n1, n2, . . . , nm}. Each of these sources soft radiation, which we describe by a Wilson

line along the direction of the hard parton. The matrix elements of these Wilson lines define

the soft functions Sm({n}, Q0, µ). To obtain the cross section, one integrates over the direc-

tions {n}, which is indicated by the symbol ⊗. The hard and soft functions are matrices in

the color space of the m partons and one takes the color trace 〈. . . 〉 after multiplying them.

The operator definition for these functions and further explanations can be found in [8].

The second observable we consider is the jet mass distribution at a lepton collider. To

define the jet mass, we use the thrust axis to split every event into two hemispheres. One

can then (randomly) select one of the two jets and compute its invariant mass M , which

is usually discussed in terms of the dimensionless variable ρ = M2/Q2. Alternatively, one

computes the mass in both hemispheres and chooses the heavier mass ρh or lighter one

ρ`. Obviously, there is a relation among the these observables: the jet mass distribution is

simply the average of heavy-jet mass and light-jet mass one

dσ

dρ
=

1

2

(
dσ

dρ`
+

dσ

dρh

)
. (1.2)

We will call the hemisphere we select to measure the mass the left one, which means that

the radiation in the right hemisphere is unconstrained.1 We introduce a light-like reference

four-vector nµ = (1, 0, 0, 1) pointing to the right along the thrust axis and an opposite

1In our previous paper, we called ρ the left-jet mass and denoted it by ρL [10].
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Figure 1. Pictorial representations of factorization formulas for interjet energy flow (left) and jet

mass (right), see (1.1) and (1.4). The black lines represent hard radiation with typical scale Q which

is constrained to be inside the cones, and the red lines depict soft radiation with a low energy scale

Q0 which is allowed to populate the full phase space. In the right figure, the blue lines in the left

hemisphere represent collinear radiation which is described by the inclusive jet function in (1.4).

vector n̄µ = (1, 0, 0,−1) pointing to the left. The hard partons in the right hemisphere

then generate the complicated pattern of soft radiation and associated NGLs. The main

difference to formula (1.1) is that one also needs the standard inclusive jet functions to

describe collinear radiation in the left hemisphere. Resummation effects in the jet mass

distribution have been discussed in refs. [18–22], however only in [18] the leading NGLs were

resummed. Our work is based on the factorization theorem for jet mass derived in [10]. The

invariant mass of the left jet is obtained from the momentum pc̄ of the energetic particles

collinear to n̄ and the soft partons in the left hemisphere,

ρQ2 = M2 = (pc̄ + ps)
2 = p2

c̄ +Q n̄ · ps +O(p2
s) . (1.3)

In the factorization theorem, the sum results in a convolution of the soft and jet functions.

To avoid this, one can work in Laplace space, where the factorization formula has the

product form

σ̃(τ) =
∑
i=q,q̄,g

j̃i(τQ, µ)

∞∑
m=1

〈
Hi
m({n}, Q, µ)⊗ S̃m({n}, τ, µ)

〉
, (1.4)

where τ is the Laplace conjugate variable of ρ, and j̃i is the inclusive jet function [23, 24],

which by now is known to three loops [25, 26]. In (1.4) the index m indicates the number

of partons in the inclusive (right) hemisphere, so that m = 1 at leading order (LO). In [10]

we have verified that the factorization formula (1.4) correctly describes the full logarithmic

structure up to next-to-next-to-leading order (NNLO) using the Event2 code [27] and we

also compared to the analytical results for the related hemisphere soft function [28–30].

In [8], we have performed the same NNLO check for the interjet energy flow formula (1.1).

As long as we consider large jet cone sizes of O(1), the leading-logarithms (LLs) in

interjet energy flow at a lepton collider are of the form αns lnn β. The interjet energy flow

is a single logarithmic observable, because collinear logarithms cancel inside the large cone
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region and only soft logarithms remain. These logarithms arise from the multi-Wilson-line

operators Sm in (1.1) and one needs to use parton shower methods to resum the enhanced

logarithms already at the LL level. In [15] we have written a dedicated parton-shower

code to perform the resummation for such observables and have interfaced it with the

MadGraph5 aMC@NLO event generator [31]. This provides an automated framework

to perform the LL resummation for single-logarithmic observables. However, collider ob-

servables are typically double logarithmic. The leading logarithms in the jet mass distribu-

tion, for example, are αns ln2n ρ. Even for non-global observables, these double logarithmic

terms have a simple structure, and they can be factored out and treated separately. In the

parton shower framework, we therefore subtract these “global” contributions and expo-

nentiate them manually, as Dasgupta and Salam did in their original paper on NGLs [32].

Given their different nature, it is interesting to analyze both the interjet energy flow and

the jet mass as examples and we will present LL′ and NLL′ improved results for single

logarithmic and double logarithmic observables, separately. A second motivation to also

analyze the jet mass, is that there are LEP measurements to which we can compare to, in

contrast to the interjet energy flow. Unfortunately, the typical jet mass at LEP jet is quite

low M . 10 GeV, which translates to a scale of the soft radiation of Q0 ∼M2/Q . 1 GeV

so that non-perturbative effects are very important in the peak region of the distribution.

Our paper is organized as follows. In the next section, we will discuss LL′ resummation

for interjet energy flow and show how one implements the one-loop corrections to the hard

and soft functions. We then move to the jet mass distribution in section 3, focussing on the

differences to the single-logarithmic case. We will in particular show how to subtract global

logarithms in the parton shower and in the soft function. After presenting numerical results

in section 4 and comparing to LEP data and PYTHIA results, we conclude in section 5.

2 Interjet energy flow at LL′ accuracy

The perturbative expansion of the interjet energy flow in (1.1) suffers from large logarithms

of the ratio of the hard scale Q and the soft scale Q0. To resum these, one solves the RG

equation of the hard function and evolves it from its characteristic scale µh ∼ Q down to

a soft scale µs ∼ Q0. This yields the RG-improved expression [8]

σ(Q,Q0) =
∞∑
l=2

〈
Hl({n′}, Q, µh)⊗

∞∑
m≥l

Ulm({n}, µs, µh) ⊗̂Sm({n}, Q0, µs)
〉
, (2.1)

where the evolution factor is defined as a path-ordered exponential of the anomalous di-

mension

U({n}, µs, µh) = P exp

[∫ µh

µs

dµ

µ
ΓH({n}, µ)

]
. (2.2)

The RG-evolution generates additional partons and maps the l-parton configuration along

the directions {n′} = {n1, . . . , nl} into an m-parton final state along the directions {n} =

{n1, . . . , nl, nl+1, . . . , nm}. The symbol ⊗̂ in (2.1) indicates the integral over the directions

of the additional m− l partons generated in the evolution.
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At the leading logarithmic level, we only need the one-loop anomalous dimension and

can rewrite the exponent as∫ µh

µs

dµ

µ
ΓH =

∫ αs(µh)

αs(µs)

dα

β(α)

α

4π
Γ(1) =

1

2β0
ln
αs(µs)

αs(µh)
Γ(1) ≡ tΓ(1) . (2.3)

In the last step, we have introduced the evolution time t ≡ t(µh, µs). For a given µh, there

is a one-to-one correspondence of the evolution time to the low scale µs. Obviously, for

µh = µs, we have t = 0. During the evolution, t grows and goes to infinity as µs hits the

Landau pole. For µh = MZ and two-loop running with a Landau pole at Λ = 0.230 GeV,

the choice µs = 1 GeV corresponds to t = 0.08. A plot connecting t and µs for different

values of µh can be found in figure 1 of our previous paper [15].

In [15] we implemented the RG evolution factor U({n}, µs, µh) in the large-Nc limit

using the parton shower method proposed by Dasgupta and Salam in [32]. We don’t want

to repeat the entire discussion here, but we give the algorithm in appendix B, since we

need to extend it to compute the soft functions, as discussed below. Let us also list the

one-loop anomalous dimension, since its form will be relevant in the discussion of the jet

mass below. It is given by [8]

Γ(1) =


V2 R2 0 0 . . .

0 V3 R3 0 . . .

0 0 V4 R4 . . .

0 0 0 V5 . . .
...

...
...

...
. . .

 . (2.4)

The entries Rm and Vm are angular functions associated with the emission of a real or

virtual soft gluon and take the form

Vm = 2
∑
(ij)

(Ti,L · Tj,L + Ti,R · Tj,R)

∫
dΩ(nk)

4π
W k
ij ,

Rm = −4
∑
(ij)

Ti,L · Tj,RWm+1
ij Θin(nm+1) , (2.5)

where the color matrices Ti,L act on the hard function from the left, i.e. on the amplitude,

while Ti,R acts on the conjugate amplitude. The sum runs over all unequal pairs (ij) of

the m hard partons. The anomalous dimension involves the dipole radiator

W k
ij =

ni · nj
(ni · nk)(nj · nk)

, (2.6)

which is given by the product of the associated eikonal factors. In the virtual corrections,

one integrates over the direction nk of the emission. We note that individually Rm and

Vm suffer from collinear divergences, which cancel in the cross section. In the Monte Carlo

implementation, one works with a collinear cutoff to regularize the divergences.

As long as we choose the µh and µs properly, the hard and soft functions will be

free of large logarithms and the large logarithmic terms are resummed in the evolution
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∼ H(1)
2 ⊗ U2m ⊗̂S(0)

m

∼ H(1)
3 ⊗ U3m ⊗̂S(0)

m

∼ H(0)
2 ⊗ U2m ⊗̂S(1)

m

Figure 2. Pictorial representations of the different ingredients for LL′ resummation of the interjet

energy flow. The diagrams on the three lines correspond to the one-loop corrections from H(1)
2 ,

H(1)
3 and S(1)

m , respectively. The virtual corrections to Sm are scaleless and vanish.

factor. Because they are free of large logarithms, the higher-multiplicity hard functions

are suppressed by αs as Hl ∼ αl−2
s H2. At LL level, we thus only need to include the hard

function H2 and the soft function is given as the unit matrix in the color space Sm ∼ 1.

At LL accuracy, the RG-improved result (2.1) simplifies to

σLL(Q,Q0) =
∞∑
m=2

〈
H2({n1, n2}, Q, µh)⊗U2m({n}, µs, µh) ⊗̂1

〉
. (2.7)

To extend these results to NLL, one needs two ingredients: the one-loop matching cor-

rections and the corrections to the RG running due to the two-loop anomalous dimensions.

The present paper focuses on the first set of corrections, i.e. LL′ accuracy. Specifically, we

need one-loop corrections to H2, the tree-level result for H3 and the one-loop soft functions

Sm. We write their perturbative expansions in the form

H2 = σ0

(
H(0)

2 +
αs
4π

H(1)
2 + · · ·

)
, H3 = σ0

(αs
4π

H(1)
3 + · · ·

)
,

Sm = 1 +
αs
4π

S(1)
m + · · · . (2.8)
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I: E1 > E2 > E3 II : E1 > E3 > E2 III: E3 > E1 > E2

q(p1)

q̄(p2)

g(p3)

Figure 3. Kinematical configurations in the three different regions with different energy ordering.

Particles with the smallest energy are drawn in red.

In this notation, the full LL′ resummed cross section takes the form

σLL′
(Q,Q0)

σ0
=

∞∑
m=2

〈
H(0)

2 ({n1, n2}, Q, µh) ⊗ U2m({n}, µs, µh) ⊗̂1
〉

+
αs(µh)

4π

∞∑
m=2

〈
H(1)

2 ({n1, n2}, Q, µh) ⊗ U2m({n}, µs, µh) ⊗̂1
〉

+
αs(µh)

4π

∞∑
m=3

〈
H(1)

3 ({n1, n2, n3}, Q, µh) ⊗ U3m({n}, µs, µh) ⊗̂1
〉

+
αs(µs)

4π

∞∑
m=2

〈
H(0)

2 ({n1, n2}, Q, µh) ⊗ U2m({n}, µs, µh) ⊗̂S(1)
m ({n}, Q0, µs)

〉
.

(2.9)

We used here that the leading-order soft function S(0)
m is the unit matrix 1 in color space.

The first line contains the LL result (2.7), and the remaining three lines show the different

NLO corrections, which are depicted in figure 2.

The hard functions Hm include the momentum conservation and phase-space con-

straints on the hard partons. For two partons, these constraints render the integrals over

the parton directions trivial. The momentum and jet direction constraints impose that the

vectors n1 and n2 must point along the thrust axis and in opposite directions so that

〈H2({n1, n2}, Q, µ)⊗ S2({n1, n2}, Q0, µ)〉 = σ0H2(Q2, µ)〈S2({n̄, n}, Q0, µ)〉 , (2.10)

where we have used that also the color structure is trivial for two hard partons. The

function H2(Q2, µ) is the standard dijet hard function

H2(Q2, µ) = 1 +
αs
4π
CF

[
−8 ln2 µ

Q
− 12 ln

µ

Q
− 16 +

7

3
π2

]
, (2.11)

which arises also for global observables such as the event shape thrust. In the large-Nc

limit, we should replace CF → Nc/2.

In [8] we have derived an expression for the hard function H(1)
3 , which corresponds

to the QCD process γ∗ → q(p1)q̄(p2)g(p3). By definition H(1)
3 only depends on angular

information of the three partons, since their energies have already been integrated over.

For convenience we split the phase space integration into different regions according to the
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direction of the thrust axis, which for three-parton final states points in the opposite direc-

tion of the most energetic parton. Due to momentum conservation, the three partons must

be in a plane. Using invariance of the cross section under rotation around the thrust axis, in

Region I only the angles θ2 and θ3, between the partons and the thrust axis, are not fixed.

For convenience we parameterize these angles in terms of two variables u and v each

going from 0 to 1 and defined as

θ̂2 ≡ tan
θ2

2
= u v, θ̂3 ≡ tan

θ3

2
= v, (2.12)

where the variable v is directly related to the larger angle θ3, while u characterises the

relative size of the angles. Please note that the variables u and v differ from the quantities

of the same name used in [8], where we defined the variables such that v = 1 corresponded

to the angle of the jet cone, rather than a 90◦ angle as in (2.12). Because the same hard

function H(1)
3 also arises for the jet mass studied below, we prefer to not incorporate the

specific phase-space constraint into its parameterization.

The bare hard function H(1)
3 in terms of the angles θ̂2 and θ̂3 was given in (4.4) of [10].

The corresponding representation includes a θ-function constraint imposed to prevent the

thrust axis from flipping. For simplicity, we choose the jet opening half-angle α ≤ π
3 so that

the axis constraint is automatically fulfilled. The hard function suffers from divergences

when u and v go to zero. In dimensional regularization after performing MS subtraction,

the contribution of Region I to the renormalized hard function H(1)
3 is given by

H(1)
3,I (u, v,Q, µ) = CF

{[
4 ln2 µ

Q
− π2

6

]
δ(u)δ(v)− 8 ln

µ

Q
δ(u)

(
1

v

)
+

+ 8 δ(u)

(
ln v

v

)
+

+

[
− ln

µ

Q
F (u, 0) +

2u2

(1 + u)3
− F (u, 0) ln(1 + u)

]
δ(v)

(
1

u

)
+

+ F (u, 0)δ(v)

(
lnu

u

)
+

+ F (u, v)

(
1

u

)
+

(
1

v

)
+

}
Θin(v). (2.13)

The function Θin(v) ensures that all hard emissions are inside the jet. For the interjet

energy flow it is given by Θin(v) = θ(δ−v), with δ = tan α
2 , where α is the jet opening half-

angle. In the large-Nc limit, the color structure of the hard functions becomes trivial and

we use non-bold symbols such as H(1)
3,I to indicate the scalar quantities which are relevant

in this limit. The expression for the auxiliary function F (u, v) is given by

F (u, v) =
4
[
u
[
−2
(
u2 + u+ 1

)
v2 + u (2u (u+ 1) + 1) v4 + u+ 2

]
+ 2
]

(u+ 1)3
. (2.14)

Similarly, in Region II we have

H(1)
3,II(u, v,Q, µ) = CF

{[
− ln

µ

Q
G(u, 0) +

2

(1 + u)3
+G(u, 0) ln

(
u

1 + u

)]
δ(v)

+G(u, v)

(
1

v

)
+

}
Θin(v), (2.15)
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with the parametrization θ̂3 = uv and θ̂2 = v. The function G(u, v) is defined as

G(u, v) =
4
[
u
[
−2
(
u2 + u+ 1

)
v2 + u(u(u+ 2) + 2)v4 + 2(u+ 1)

]
+ 1
]

(u+ 1)3
. (2.16)

Region III describes the situation, where the gluon is the most energetic particle and we

parameterize θ̂1 = uv, θ̂2 = v. The hard function reads

H(1)
3,III(u, v,Q, µ) = CFH(u, v)Θin(v), (2.17)

with

H(u, v) =
4v
(
u4v4 + u2v4 + 4u2v2 + u2 + 1

)
(u+ 1)2 (1− uv2)

. (2.18)

Next, we will discuss how to implement the above expressions into the parton shower code.

We first rewrite the angular integral in the H(1)
3 contribution as

〈
H(1)

3 ({n}, Q, µh) ⊗ Ŝ3({n}, µh)
〉

=

∫ 1

0
du

∫ 1

0
dv
〈
H(1)

3 (u, v,Q, µh)Ŝ3(u, v, µh)
〉
, (2.19)

where we have defined Ŝ3(u, v, µh) =
∑∞

m=3 U3m({n}, µs, µh) ⊗̂1, which is the LL RG

evolution or parton shower soft function. To implement this formula into a Monte Carlo

framework, we will randomly generate u and v and then run the shower Ŝ3(u, v, µh) for the

given configuration. There is, however, one complication, namely that the hard function is

a distribution and can therefore not be integrated point by point. One way to solve this

problem is to evaluate Ŝ3(u, v, µh) on a grid, interpolate and then perform the integrations

over u and v. This works well because Ŝ3(u, v, µh) is a smooth function of the angles as

can be seen from figure 4. Note in particular that the limit v → 0, in which both angles go

to zero and the two Wilson lines become collinear, is completely smooth. In this limit the

quark and gluon Wilson lines combine and produce the same radiation as a single quark

Wilson line, encoded in the function Ŝ2. The relation

Ŝ3(u, v = 0, µh) = Ŝ2(µh) (2.20)

will lead to important simplifications below. In the right plot, we show the evolution time

dependence of the soft function Ŝ3 for fixed angles. One observes that the function falls

off much faster when the hard partons approach the jet cone. In this configuration, more

soft radiation exits the cone, explaining this suppression.

Interpolating the soft function Ŝ3 gives accurate results, but is not efficient since the

function depends on the phase-space constraints and thus needs to be recomputed when

one changes the cone angle. It is much more natural to compute the convolution (2.19)

directly in the Monte Carlo code. The simplest way to implement the plus distributions

in the hard function into the Monte Carlo is to use a slicing method. To explain it in a

simple setting, let us for the moment only consider the v dependence and forget about the

variable u. Then the convolution (2.19) takes the form

H(1)
3 ⊗ Ŝ3 =

∫ 1

0
dv

[
Aδ(v) +B(v) +

1∑
i=0

Ci(v)

(
lni v

v

)
+

]
Ŝ3(v), (2.21)

– 9 –



J
H
E
P
0
4
(
2
0
1
9
)
0
2
0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.00 0.02 0.04 0.06 0.08
0.0

0.2

0.4

0.6

0.8

1.0

Figure 4. Left: angular dependence of Ŝ3 for fixed evolution time t = 0.08. Note that the angles

θq and θg of the hard partons to the jet axis must be smaller than the cone angle α = π/3 ≈ 1.04.

Right: dependence on the evolution time t at fixed angles.

where B(v) represents a regular function. Thanks to relation (2.20) the A term can be

combined with the LL parton shower result involving Ŝ2 and the contribution from B(v)

can be computed by randomly generating v-values and running the shower for each chosen

configuration. The slicing method introduces a lower cutoff v0 into the plus distribution

integrals Ci(v) to ensure that v can not go to zero. With the cutoff in place, we can

integrate the subtraction term, e.g.∫ 1

0

dv

v

[
Ŝ3(v)− Ŝ2

]
=

∫ 1

v0

dv

v
Ŝ3(v) + ln v0 Ŝ2 +O(v0), (2.22)

where one can use the same Monte Carlo method as for the B(v) terms to simulate the

first term with the collinear cutoff v0, and then adds back the second term which is given

by the LL parton shower result, multiplied by a logarithm of the cutoff parameter. The

v0 dependence will cancel out between the two terms up to power corrections. The power

corrections in the artificial parameter v0 can be neglected as long as one chooses it small

enough. The slicing method involves large cancellations between the two terms on the

right-hand side of (2.22), so for numerical stability reasons one should not choose v0 too

small. These two opposing requirements make slicing methods delicate, but we compared

to the result using the interpolated soft function Ŝ3 and found good consistence. The

cutoff independence is demonstrated in figure 12 in appendix A.

Up to now we have disregarded the u dependence, but the Monte Carlo implementation

of the full equations (2.13), (2.15) and (2.17) involves nothing beyond the above discussion,

except that we have to consider both integrations. As (2.20) shows, the soft function

becomes trivial for v → 0 and we can combine all δ(v) dependent terms with the parton

shower for Ŝ2. We thus only need to apply the slicing method to the δ(u)
(
lni v/v

)
+

and

(1/u)+(1/v)+ terms. The corresponding cutoff dependent compensation terms are collected

in appendix A.
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The final ingredient we need to implement is the one-loop soft function, which is defined

as a sum over all dipoles

αs
4π

S(1)
m ({n}, Q0, ε) =

= −g2
s µ̃

2ε
∑
(ij)

Ti,L · Tj,R
∫

ddk

(2π)d−1
δ(k2)θ(k0)

ni · nj
ni · k nj · k

Θout(nk)θ(Q0 − Ek) , (2.23)

where the sum runs over all unordered pairs (ij). In the large-Nc limit only neighbouring

legs give a contribution

Ti,L · Tj,R → −
Nc

2
δi,j±1 . (2.24)

We evaluate the one-loop soft function numerically within our Monte Carlo code. It is well

suited for this task since it generates emissions between neighbouring dipoles in an efficient

way, by randomly choosing the rapidity ŷ and azimuthal angle φ̂ of the emission in the

COM (center-of-mass) frame of the emitting dipole (ni, nj). Here and in the following, we

will use hats to indicate kinematic quantities in the COM frame. Our hard function shower

keeps emitting additional hard partons until one of them enters the veto region at which

point it terminates. In our implementation, we use this last parton in the veto region to

obtain the NLO correction to the soft function. At NLO, the renormalized soft function

can be expressed as

S(1)
m ({n}, Q0, µ) =

Nc

2

m∑
i,j=1

δi,j±1

∫
dŷ

∫ 2π

0

dφ̂

2π

[
−4 ln

µ

Q0
+ 4 ln

2 | sin φ̂|
fij(φ̂, ŷ)

]
Θlab

out(ŷ, φ̂) ,

(2.25)

with Θlab
out(ŷ, φ̂) constraining soft radiation to be outside of the jet cone in the lab frame.

In the Monte Carlo implementation, the factor in square brackets is a weight factor for

the corresponding emission. The auxiliary function fij(φ̂, ŷ) connects the transverse mo-

mentum k̂T in the COM frame to the energy Q0 in the lab frame, k̂T fij(φ̂, ŷ) ≤ Q0, and is

given by fij(φ̂, ŷ) = 2
M

(
−β cos φ̂+ cosh ŷ

)
, where M2 = 2ni ·nj is the invariant “mass” of

the dipole pair, and β =
√

1−M2/4. The logarithm of | sin φ̂| arises from expanding the

azimuthal angular integration in ε, which is related to the space-time dimension through

d = 4− 2ε. A detailed derivation of expression (2.25) can be found in appendix A.

While our slicing implementation of the hard function is simple but specific to the dijet

processes and certainly not optimal, the above procedure to obtain the NLO soft function

is simple, efficient and general. Compared to the LL parton shower code, including the

one-loop soft function correction (2.25) yields

∞∑
m=2

〈
Hm(t) ⊗̂S(1)

m

〉
=
〈
H2(t)S(1)

2 +

∫
dΩ1

4π
H3(t)S(1)

3 +

∫
dΩ1

4π

∫
dΩ2

4π
H4(t)S(1)

4 + . . .
〉
,

(2.26)

where one evolves the hard function from hard scale to soft scale and multiplies it with the

soft function S(1)
m of the corresponding multiplicity. When running our Monte Carlo code

we fill three histograms, one for the LL shower, one for the logarithmic part of (2.25) and
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one for the non-logarithmic part. Further details of the Monte Carlo algorithm, including

the implementation of the one-loop soft function are given in appendix B.

The computer time needed to run the shower including the one-loop corrections de-

pends on the maximum evolution time needed in the computation. For the interjet energy

flow, we run the shower until t = 0.08, corresponding to µs ≈ 1 GeV. For a collinear cutoff

at ηcut = 4 (ηcut = 5) in the parton shower we then end up with about 15 (30) hard partons

per event on average. To resolve the peak region of the jet mass, discussed in the next

section, we have to run to extremely low scales µs = 0.275 GeV, corresponding to t = 0.3,

near the Landau pole at Λ = 0.230 GeV. At this scale, hundreds of partons are generated

in each event and we need a few days of computer time on a cluster to obtain our numerical

results, which will be presented in section 4 below.

3 NLL′ resummation for jet mass

Our second task is to perform the resummation for the jet mass distribution at electron-

positron colliders. In contrast to the interjet energy flow, this observable suffers from

soft-collinear double logarithms. These then constitute the LL results, while the non-

global structure only arises at NLL. The resummation of jet mass including the leading

non-global logarithms has been discussed in [10, 18, 32, 33]. At NLL level, the non-global

logarithms yield a simple overall factor which multiplies the cross section. Beyond NLL

this simple factorization does not hold anymore, and one needs to include the corrections

piece by piece.2 The basic structure of the corrections is of course the same as for the

interjet energy flow, see (2.9) and figure 2, and we therefore mainly focus on the differences

to this case. In addition to the double logarithms, the most important new element is

that the factorization arises in Laplace space. We use the same notation as [10], where we

presented NLL resummation results. For NLL′ accuracy we need to keep one-loop matching

corrections in the factorization formula (1.4) and the theorem then reads

σ̃(τ, µh) =
∑
i=q,q̄

∞∑
m=1

j̃i(τQ, µh)
〈
Hi

1({n}, Q, µh)⊗U1m({n}, µs, µh) ⊗̂ S̃m({n}, τ, µs)
〉

+
∑
i=q,q̄,g

∞∑
m=2

j̃i(τQ, µh)
〈
Hi

2({n}, Q, µh)⊗U2m({n}, µs, µh) ⊗̂1
〉
. (3.1)

In the first line we must include one-loop corrections for the quark jet function j̃q, the hard

function H1 and soft functions S̃m. We do not include the O(α2
s) cross terms so that the

first line turns into a sum of terms with the individual corrections. The hard function Hi
2

in the second line includes two hard partons in the right jet. Since it involves a power of

αs due to the hard emission, the remaining ingredients are only needed at LO. The second

line also includes a gluon-jet contribution, for the case where the qq̄ pair is in the right

2The recent paper [34] on the jet shape includes one-loop corrections only for the global part, which

corresponds to m = 1 in (1.4), and does therefore not reach full NLL′ accuracy. Including the non-global

structure would result in a factorization formula similar to (4.18) in [15].
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hemisphere. The one-loop hard functions are the same as for interjet energy flow, up to

the different phase-space constraints. They are given in appendix C.

In Laplace space, RG-evolution is multiplicative and we can factor out and exponen-

tiate the double logarithms. Removing the double logarithmic part is important since our

shower evolution, which also takes place in Laplace space, is purely soft. The subtraction

of collinear contributions will also be needed for our numerical computation of the one-loop

soft function. Using standard techniques introduced in [35], we can perform the inversion

to momentum space analytically at the end and write a momentum space result directly

in terms of Laplace-space ingredients.

The anomalous dimension ΓH in (2.4) which drives the resummation of the logarithms

in interjet energy flow (1.1) can be viewed in two ways: as the hard anomalous dimension,

used to evolve the hard functions to the soft scale, or as the soft anomalous dimension which

evolves the soft functions to a higher scale. RG invariance of the cross section implies that

the two evolutions must agree. The situation is more interesting for the light-jet mass (1.4)

which involves three ingredients. In this case RG invariance translates into the statement

ΓHilm({n}, Q, µ) = ΓSilm({n}, τ, µ) + ΓJi(τQ, µ)δlm , (3.2)

where

ΓJi(τQ, µ) = −2Ciγcusp ln

(
τQ

µ2

)
+ 2γJi . (3.3)

The Casimir Ci for the quark-jet channel is Cq = CF , while the gluon configuration has

Cg = CA. In our paper [10], we have analyzed the one-loop soft anomalous dimension and

found that it has the form

ΓSilm({n}, τ, µ) = 2Ci γcusp ln

(
τ

µ

)
δlm + Γ̂lm({n}) , (3.4)

where Γ̂lm is a regular non-logarithmic anomalous dimension, which takes the same form

as (2.4), except for a subtraction to remove the collinear singularities, which give rise to

the cusp piece in (3.4). The subtraction is achieved by replacing the diagonal elements

in (2.4) by Vm → V m = Vm − V0, with

V0 = V0 1 = −4Ci 1

∫
dΩ (nk)

4π

n̄ · n
n̄ · nk nk · n

ΘL(nk), (3.5)

where ΘL(nk) ensures that the emission is in the left hemisphere with the light jet. The

trivial color structure arises from color conservation

m∑
i=1

T0 · Ti = −T0 · T0 = −Ci 1 . (3.6)

Note that V0 is equal to the one-loop result (real plus virtual) for the case where there

is only one hard parton on the right, which then, by momentum conservation, flies along

n. The subtraction therefore removes the “global” one-loop part of the soft anomalous

dimension. After this, the Monte Carlo result no longer involves collinear singularities. As
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before we regularize the collinear singularities in the individual entries of Γ̂ using a cutoff.

The parton shower algorithm of Dasgupta and Salam [32] instead uses a veto algorithm to

remove global logarithmic terms. Our subtraction of the global piece has the advantage

that our Monte Carlo weights are always positive. Let us also note that the role of the

subtraction is to separate out the collinear singularities, so that the same subtraction can

be used for any process with the same double logarithmic structure, i.e. also in cases with

more complicated geometry, where we cannot analytically compute the one-loop function.

To make use of the separation of the anomalous dimension into two pieces, we now

factor the soft function as

S̃
i

m({n}, τ, µs) = S̃iG(τ, µs)Ŝ
i
m({n}, τ, µs) , (3.7)

with

S̃qG

(
Ls = ln

τ

µs
, µs

)
= 1 +

αs
4π
CF

(
−4L2

s −
π2

2

)
+O(α2

s). (3.8)

The splitting of the soft function into single and double logarithmic pieces is of course not

unique. We have chosen the double-logarithmic “global” part S̃iG such that it includes the

full one-loop result, so that the “non-global” remainder function Ŝim starts at two loops

for m = 1 partons in the right hemisphere. For the gluon case, we only need the tree-level

result S̃gG = 1 since the hard function for this channel is suppressed by αs.

The global piece fulfills a standard RG-evolution equation driven by the cusp piece

of (3.4) which can be immediately solved in Laplace space. Using the technique introduced

in [35], the associated momentum-space solution takes the form

SiG(ω, µ) = exp [2CiS(µs, µ)] S̃iG(∂ηS , µs)
e−γEηS

Γ(ηS)

1

ω

(
ω

µs

)ηS
, (3.9)

with ηS = 2CiAγcusp(µs, µ), where the logarithm Ls has been replaced by a derivative

operator with respect to ηS .

With the global function at hand, the Monte Carlo simulation only needs to provide the

remainder Ŝim. Its single logarithmic RG-evolution is obtained by the subtracted parton

shower described above and the one-loop correction for an m-parton configuration is given

by

Ŝi (1)
m ({n}, τ, µs) = S̃i (1)

m ({n}, τ, µs)− S̃i (1)
G (τ, µs) , (3.10)

which, by construction, is free from collinear logarithms. We compute this difference in

the large-Nc limit by running the shower until it produces a parton in the left hemisphere,

which is the veto region for the present case. The outside parton is the soft emission and

we then compute the relevant one-loop weight factor precisely as in (2.25). The form of

the Laplace space soft function can be found in the appendix in (C.7). When the emission

arises from the first dipole, which involves the left parton along n0 = n̄, we subtract the

global part. For the quark-jet channel the subtraction is given by

S̃
q (1)
G (τ, µ) =

Nc

2

∫
dŷ

dφ̂

2π

[
−4 ln

µ

τ
+ 4 ln

2 | sin φ̂|
g0j(φ̂, ŷ)

]
ΘL(ŷ, φ̂)X(ŷ, φ̂) , (3.11)
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with a re-weighting factor

X(ŷ, φ̂) = e2ŷ/(e2ŷ + β2 − 2eŷβ cos φ̂) . (3.12)

The factor X is simply the ratio of the radiator (2.6) associated with the original (n̄, n)

dipole and the one of the dipole (n̄, nj) which emits the gluon and defines the frame in

which ŷ and φ̂ are generated. The subtraction removes the collinear divergence in the

(n̄, nj) dipole and yields Ŝqm. The function gij in (3.11) relates the momentum component

n̄ · k in the lab frame to the transverse momentum k̂T in the COM frame of the dipole

(ni, nj), analogously to the function fij in (2.25). Its explicit form is given in the appendix

in (C.8).

The final ingredients in (3.1) are the one-loop jet functions, which are well known. In

Laplace space, the one-loop jet function is given by

j̃i

(
Lj = ln

Qτ

µ2
, µ

)
= 1 +

αs
4π

(
Ciγ

cusp
0

L2
j

2
+ γJi0 Lj + cJi1

)
, (3.13)

which translates to the momentum-space result [35]

Ji(p
2, µ) = exp

[
−4CiS(µj , µ) + 2AγJi (µj , µ)

]
j̃i(∂ηJ , µj)

e−γEηJ

Γ(ηJ)

1

p2

(
p2

µ2
j

)ηJ
, (3.14)

with ηJ = 2CiAγcusp(µj , µ). The relevant expressions for the ingredients are listed in

appendix E. Combining the global soft function with the jet function, we obtain

Σi(ρ) = Q2

∫ ρ

0
dρ′
∫ Qρ′

0
dωJi(Q

2ρ′ −Qω, µh)SiG(ω, µh)

= exp
[
2CiS (µs, µh)− 4CiS (µj , µh) + 2AγJi (µj , µh)

]
j̃i(∂η, µj)S̃

i
G(∂ηS , µs)

× e−γEη

Γ(η + 1)

(
Q2ρ

µ2
j

)η (
Qµs
µ2
j

)−ηS
, (3.15)

where we define η = ηJ + ηS . The full result is obtained after combining this with the

subtracted shower evolution, the hard functions and the one-loop soft correction (3.10).

To implement this expression in practice, we run the shower, tabulate the results for the

individual contributions to (3.1) and then replace the global function S̃iG(ω, µh) in (3.15)

by the full result which includes the hard functions, evolution and one-loop corrections.

Up to NNLL, the integrated heavy-jet mass distribution is obtained as

1

σ0

∫ ρh

0
dρ̄h

dσ

dρ̄h
= H2(Q2, µh) [Σq(ρh)]2 . (3.16)

Using this result and relation (1.2) one obtains the light-jet mass.

4 Numerical results

In this section we will present numerical results, first for the interjet energy flow, then

for the jet mass. For our plots, we work with Q = MZ and αs(MZ) = 0.1181, and use
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Figure 5. Left panel: hard function corrections, with bands arising from hard scale variation.

Right panel: soft function corrections, with bands from soft scale variation.

two-loop αs(µ) running with nf = 5 quark flavors. To our knowledge, no measurements

are available for the interjet energy flow, but we will compare our results for the jet mass

to LEP measurements by ALEPH [36].

4.1 Interjet energy flow

For our numerical discussion we choose jet cone size parameter as α = π/3. This is

equivalent to δ = tan α
2 = 1/

√
3, or rapidity gap size ∆y = − ln δ2 ≈ 1.1. We want to avoid

small cone angles, or equivalently large rapidity gaps, in order not to have to deal with

large collinear logarithms. In our plots we show the gap fraction

R(Q0) =
1

σtot
σ(Q,Q0) ≡

∫ Q0

0
dEs

1

σtot

dσ

dEs
, (4.1)

which is the fraction of events in which the soft radiation outside the jets has an energy Es
below the cutoff Q0. By definition, the amount of energy in the gap must be below Q/2,

otherwise the thrust axis, which defines our jet axis, would flip. The fixed order result is

therefore R(Q0 = Q/2) = 1 at any order in perturbation theory. The O(α0
s) result with just

two back-to-back partons is of course R(Q0) = 1, a nontrivial Q0 dependence only arises

at O(αs) when the third parton is inside the gap. We will refer to the O(αs) result as LO.

As a first step, let us check the size of the individual corrections and investigate whether

the scale dependence is reduced after including them. In figure 5 we show the hard and

soft corrections separately and then plot the scale bands from varying the associated scales

by a factor two around their default values µh = Q and µs = Q0. Compared to the LL

scale bands shown in red, the scale dependence is reduced in both cases after including the

corrections. We observe that the hard corrections are quite significant and positive, while

the soft corrections are moderate and negative. The hard corrections have two sources,

virtual corrections to H2 and real emission contributions encoded in H3. The first of these

is just a constant factor multiplying the LL result, while the second one comes together

with the higher soft function S3. Both corrections are positive. At high values of Q0 the
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Figure 6. The profile function (4.3) for n = 1 (left plot) and n = 4 (right plot). We will use the

n = 4 function as our default choice.

three parton contribution from H3 is about twice as large as the one from the one-loop

correction to H2 and it becomes more dominant at smaller values.

It is clear that the large hard function corrections at Q0 . Q/2 must be compensated

by terms which are power suppressed in Q0/Q and are not captured by the resummation

based on the factorization formula (1.1), which arises in the limit Q0 → 0. One can obtain

these power suppressed terms by matching to the fixed-order result. More precisely, one

adds to the resummed result the fixed-order prediction minus its expansion around Q0.

The subtraction removes the terms which are already included in the resummation. These

power suppressed matching terms can be obtained as

∆R(Q0) =

∫ Q0

0
dEs

1

σtot

(
dσ

dEs
− dσ

dEs

∣∣∣∣
Es→0

)
. (4.2)

To evaluate this integral, one computes the cross section to find a parton inside the gap

and subtracts from it its soft limit. The subtraction eliminates the virtual contributions

and leads to a finite integral, which one can evaluate numerically. However, even after the

matching to the fixed order result, the resummed result does not yet tend to R(Q0) = 1

for Q0 → Q/2 because we resum logarithms of µs/µh → 1/2 for µs ≈ Q0 and µh = Q. To

switch off the resummation, one can choose the soft scale in such a way that it approaches

the hard scale µh as Q0 → Qmax = Q/2. This can be achieved, for example with a profile

function [37] of the form

µs(Q0) =
xsQ0

1 + xsQ0

µh
+
∑n

i=1 ci

(
Q0

Qmax

)i , (4.3)

where xs = 1 corresponds to the default choice and the scale bands can be obtained

by varying the parameter xs by a factor two. For low values of Q0, this reduces to the

standard choice µs(Q0) = Q0xs. The power suppressed term in the denominator are

chosen to switch off the resummation at the endpoint Q0 = Qmax, similarly to what is

usually achieved through a modification of the logarithms in traditional resummation. The
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Figure 7. Comparison of our results for the interjet energy flow to fixed order (left plot) and to

PYTHIA (right plot).

simplest choice for (4.3) is n = 1 and c1 = −1, but we observe that the approach to fixed

order is relatively slow. To make it faster, we choose n = 4 and impose that the first three

derivatives at the end-point vanish, explicitly c1 = −4, c2 = 6, c3 = −4, c4 = 1. We

plot the two different profile functions in figure 6 and will use n = 4 as the default in our

numerical implementation. The choice of the profile function affects the resummation of

power-suppressed contributions. If the shape is important, one should of course compute,

or even resum, the power corrections to resolve the difference. The first step would be to

include the matching up to NNLO, which would in principle be possible since the fixed-

order results are available [38–40]. In practice it would require some effort since we would

need to compute the fixed-order expansion of our results (including the shower).

In figure 7, we show an improved numerical result which includes the matching correc-

tion ∆R(Q0), shown as a black dotted line, and uses the scale choice (4.3) to switch off the

resummation at the end-point. The matching correction is negative and compensates the

large hard corrections near the end-point. The LL′ corrections lead to a larger gap fraction

R(Q0). As mentioned earlier, there is unfortunately no experimental data to which we can

compare our results, but we compare to PYTHIA [41]. While the two results are similar

at very low Q0, PYTHIA is higher at intermediate values. We also compared to the VIN-

CIA shower [42] which yields results which are very similar to PYTHIA. We remind the

reader, that the intermediate values heavily depend on the profile function used to switch

off the resummation.

4.2 Jet mass

Let us now turn to the jet mass ρ. For interjet energy flow, we considered the integrated

cross section, i.e. all events with energy in the gap below the veto, while we will look at the

differential spectrum in the present case, since this is what was measured by the LEP exper-

iments. We will however compute the spectrum by taking the derivative of the integrated

cross section, which has the advantage that the spectrum is correctly normalized if the re-

summed prediction for the integrated cross section matches the fixed-order result at large ρ.
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Figure 8. NLL′ corrections from the jet, hard and soft functions and their scale uncertainties.

Each band comes from varying the scale associated with the correction by a factor of two around

the default value. In the last plot we show LO power corrections from the fixed-order computation.

We have multiplied the distributions by ρ in order to make the results at larger ρ visible.

As a first step, we again separately plot the different ingredients and their scale depen-

dence in figure 8. In the first three plots we compare NLL to NLL′ with corrections from

the jet, hard and soft functions. The red bands are the NLL result with scale variation,

where we vary either the jet, hard or soft scale by a factor of two around the default values

µh ∼ Q, µj ∼
√
ρQ and µs ∼ ρQ. The blue curves show contributions at NLL′ accuracy

from one of the three ingredients with its associated scale variation. Obviously, the scale

dependence is strongly reduced from NLL to NLL′ for jet and hard corrections. The soft

scale dependence, on the other hand, is only modestly reduced after including one-loop

soft function corrections. The scale bands mostly overlap with each other, which indicates

that perturbative convergence is reasonably good in all the three cases.

In the last plot of figure 8 we show the effect of adding the O(αs) power corrections to

the NLL′ results. The LO power corrections for the heavy-jet mass are known analytically

and given in appendix E. They are the same as for thrust, because the three-parton results
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Figure 9. Jet-mass distribution compared to PYTHIA results. On the left side we plot our default

result, based on using the profile scale (4.3) and exponentiating the matching corrections. On the

right-hand side, we do not perform these modifications such that we get a negative cross section at

low ρ and hit the Landau pole at a nonzero ρ.

for jet mass and thrust agree. Since the light-jet mass vanishes at O(αs), we can immedi-

ately also obtain the LO power corrections for the jet mass distribution. From the plot, we

observe that the difference between NLL′ and NLL′+LO is very small, and that the contri-

butions from power corrections will reduce the resummed result in the large jet mass region.

In order to reproduce the full fixed order result, we use CF = 4/3 instead of the strict large-

Nc value CF = 3/2 for the hard, jet and soft one-loop corrections in the resummed results.

We also use the exact color factors in the evolution factors of the global part (3.15).

The end-point of the jet mass distribution is at ρmax = 1/3 at O(αs), corresponding to

a symmetrical configuration of the three partons. We will work with the same profile func-

tion (4.3) to switch off the higher-order terms at the end point. To adapt it to the present

case, we set Q0 = ρQ and Qmax = Q/3. For simplicity, we will adopt the canonical value

µj =
√
µs µh in the following and only indirectly vary the jet scale through the variations

of µs and µh, which we vary independently by a factor of two around their default values.

At very low values of ρ, the scale µs(Q0) hits the Landau pole at Λ = 0.23 GeV. Near

the pole the soft corrections become large and negative, resulting in a negative cross section.

To avoid this unphysical behaviour, we replace µs(Q0)→ µs(Q0)+Λ so that the pole occurs

at ρ = 0. We also exponentiate the hard, jet and soft corrections to avoid the negative cross

section. In the left plot of figure 9 we show our result for the jet mass distribution after

these modifications. In the right plot, we show the result with µs(Q0) = ρQ and without

exponentiation. We observe that the soft scale dependence changes sign at a point to the

right of the peak. In this region the soft scale dependence becomes very small. With the

modifications in µs, we end up with quite small scale bands to the right of the peak, which

are likely not an accurate characterization of the true uncertainties. The NLL′ peak in

the right-hand plot is quite a bit higher because the cross section becomes negative below

ρ = 0.004 and our distributions are by construction normalized. An important feature

of our result is that peak occurs at a very low value ρ ≈ 0.006, which corresponds to
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Figure 10. Jet-mass distribution and comparison to ALEPH data [36] (green dots with error

bars). The black curve represents the LO prediction for jet mass, where its analytical expression is

given in (E.3). The red curve is the NLL resummation result and the band is from scale variation.

The blue curve corresponds to NLL′ + LO results, in which we switched off resummation effects at

large ρ using (4.3).

µs ≈ 0.5 GeV so that the peak region is strongly affected by nonperturbative effects. In

figure 9 we also show the PYTHIA [41] results, both on the parton level (dashed lines)

and including hadronisation. The hadronisation effects shift the peak to the right by about

∆ρ ≈ 0.006, in accordance to what one expects from non-perturbative effects in the soft

functions [43, 44]. The parton-level PYTHIA result is quite close to the NLL′ result.

In figure 10 we compare the NLL′+LO jet mass distribution with ALEPH results [36],

obtained by combining their measurements for the light-jet and the heavy-jet mass us-

ing (1.2) and adding the uncertainties on the individual measurements in quadrature. One

immediately sees that the experimental peak shifted to the right from non-perturbative

effects and the shift is compatible with the PYTHIA hadronization result. We also ob-

serve that the jet mass distribution falls off quite rapidly and to make the region of larger

ρ visible, we include also a logarithmic plot in figure 10. The plot also illustrates what

motivated the profile function (4.3) with n = 4. The choices ensures that we start switch-

ing off the resummation fairly quickly about half-way to the endpoint and go over to the

fixed-order result. The plots show that, compared the LO fixed-order result, resummation

greatly improved the description of the experimental data. On the other hand there is — if

at all — only a relatively narrow region in ρ in which both higher-order power corrections

and non-perturbative corrections are small.

For completeness, we show in figure 11 numerical results for the heavy-jet mass ρh and

the light-jet mass ρ`. The heavy-jet mass is global and provides a reference variable at

the same accuracy, but free from all the complications which arise for the jet mass. From

the difference of the heavy-jet mass and the jet mass we obtain the light-jet mass. This

is more sensitive to the non-global structure and also only has a nontrivial distribution at

O(α2
s) so that there is no matching at the accuracy we work. The end-point for the NLO

light-jet mass is at ρmax = 1/6, which is achieved when the four parton momenta form a
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Figure 11. Light-jet and heavy-jet mass distribution in comparison to ALEPH data [36].

tetrahedron, and we use this as the endpoint in our profile function (4.3). From the plot,

one observes that also the heavy-jet distribution is affected by nonperturbative effects in

the peak region, however, the peak is at a larger ρ value than for the jet mass itself. Not

surprisingly, the worst description of the data arises for the light-jet mass distribution.

At larger ρ values the description is worse because the fixed-order result starts at O(α2
s)

so that the matching corrections are beyond the accuracy of our computation. The peak

region is not well described because it is in the nonperturbative regime and very narrow.

5 Conclusion and outlook

In this paper we analyzed non-global observables and, for the first time, went beyond

a resummation of only the leading non-global logarithms. Specifically, we analyzed the

single-logarithmic interjet energy flow at LL′ and the double-logarithmic jet mass at NLL′.

The prime indicates that we included the full next-to-leading-order corrections to the hard

and soft functions, as well as the jet function in the case of jet mass. The practical

implementation of these corrections is the main result of the present paper. To achieve full

NLL resummation for the interjet energy flow, and NNLL accuracy for the jet mass, we

will need to also include the two-loop corrections the RG running, but we observe that the

inclusion of the one-loop matching corrections already leads to an improved description of

these observables. Since the jet mass peaks at a low value corresponding to a soft scale of
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M2
J/Q ≈ 0.5 GeV for LEP energies, the peak region is strongly affected by non-perturbative

effects, similar to what is observed for other event shapes.

Due to the intricate structure of the soft emissions, factorization theorems for non-

global observables and the associated RG evolution are much more complicated than in

the global case. Instead of analytical computations, one needs to resort to a numerical

Monte Carlo framework to perform the resummation. While the global heavy-jet mass

only involves a soft function with two Wilson lines, the shower evolution for jet mass

produces additional legs, and for low jet masses we can end up with soft emissions from

hundreds of hard partons. However, concerning the NLO soft function, this is a minor

complication, since we only connect pairs of legs at this accuracy. Indeed, the inclusion of

the NLO corrections to the soft function is a minor modification of the leading-logarithmic

shower framework. Using the shower emissions which end up in the veto region, we are

able to compute the next-to-leading-order correction to the soft function in a general way,

with almost no additional computer time.

The more involved part is the implementation of the NLO hard functions. These are in

essence the usual real and virtual fixed-order corrections to the Born-level process, but in-

dividually suffer from collinear divergences. Computing them in dimensional regularization

and renormalizing, one ends up with distributions in the angles of the hard partons which

must be implemented into the Monte Carlo framework. We do this with a simple slicing

scheme, which works well for two-jet production in e+e− but is certainly not the most

efficient method. The problem of combining a parton shower with fixed-order results arises

of course also for general purpose showers and elegant solutions such as MC@NLO [45]

and POHWEG [46] are available and have by now been fully automated. A complication

in our case is that our shower systematically neglects small soft momenta and therefore

does not conserve momentum. As a result, its kinematics is different from the one in

the hard functions. While more work is needed on the NLO hard functions, let us note

that we have achieved full automation for the leading-order hard functions in our previous

paper [15] by working with Les Houches event files generated by the tree-level generator

in MadGraph5 aMC@NLO. The same code also provides NLO shower matching and it

would be very interesting to adapt it to our shower.

An important next step is of course the inclusion of second-order corrections into the

RG-running to achieve the full resummation of subleading non-global logarithms. The

corresponding anomalous dimension matrix involves three types of corrections: double real

emissions, real-virtual terms and fully virtual two-loop corrections. The relevant anomalous

dimension matrix has been presented in a related framework by Caron-Huot [4]. We are

working on determining the anomalous dimension also in our formalism. The implemen-

tation into a Monte Carlo framework will be nontrivial, because one needs to numerically

handle the collinear singularities of the individual entries. There are a number of recent

papers addressing the issue of double emissions in general parton showers [47–50].

A second interesting challenge is the inclusion of finite-Nc effects, especially for non-

global observables at hadron colliders. Our RG-evolution framework is in the general class

of showers characterized in [51] and valid at finite Nc, but implementing the interference

effects and complex phases which arise beyond Nc →∞ is challenging. Interesting progress

towards the computation of such corrections has been made in [14, 52].
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We have analyzed two simple non-global observables in the present paper. This is a

first step, but our ultimate goal is of course to use the same methods to understand jet

structure at the LHC. For narrow jets, the non-global structure actually factorizes into a

structure for each separate jet [6, 8, 18]. Boosting our hemisphere jet mass result such

that the left hemisphere transforms into a cone of radius R, one immediately obtains the

non-global structure of the jet mass for an LHC jet of this radius. It will be interesting to

analyze such observables in the future.
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A Hard and soft functions for interjet energy flow

A.1 Hard functions in the slicing scheme

We discussed in section 2 that one can use a simple slicing method to implement the plus

distribution terms inside hard function H(1)
3 (u, v) into the shower. In the main text, we

have explained the procedure using the toy example (2.21) in which we disregarded the u

dependence. In this appendix we now provide the full expression for the hard function.

As explained in section 2, we can directly integrate over u for the δ(v) terms and combine

them with Ŝ2. Since there are no singularities inside Region III, we only give expressions

for Regions I and II,

H(1)
3,I (u,v,Q,µ) =CF

{[
4ln2 µ

Q
+ln

µ

Q

(
7

2
+8ln2−8lnv0

)
+4− π

2

6
+

7

2
ln2+4ln2 2

+lnv0

[
−7+2u0 +5u2

0

2(1+u0)2
−8ln2+8ln(1+u0)

]
+4ln2 v0

]
δ(u)δ(v) (A.1)

+F (0,v)δ(u)
θ(v−v0)

v

[
lnu0− ln

µ

Q
+lnv

]
+F (u,v)

θ(u−u0)θ(v−v0)

uv

}
Θin(v) ,

H(1)
3,II(u,v,Q,µ) =CF

{[(
ln
µ

Q
− lnv0

)(
5

2
−8ln2

)
+3− 2π2

3
+

5

2
ln2−4ln2 2

]
δ(u)δ(v)

+G(u,v)
θ(v−v0)

v

}
Θin(v) , (A.2)

where the cutoffs on u and v are chosen as u0 = v0 = e−ηcut−1 in the parton shower code.

The cutoff ηcut is imposed in the parton shower on the rapidity of the emitted hard partons.

It can be imposed in the lab frame or in the COM frame of the emitting dipole, see [15] for

– 24 –



J
H
E
P
0
4
(
2
0
1
9
)
0
2
0

���� ���� ���� ���� ����

�

�

�

�

�

�

���� ���� ���� ���� ����

��

��

��

Figure 12. Numerical comparison among different Monte Carlo implementations of the one-loop

hard corrections R
(1)
H to the gap fraction. The red line corresponds to the interpolation method,

the other two are obtained using the slicing method with different values of the cutoff ηcut. Left:

coefficient of the single logarithmic part. Right: non-logarithmic terms.

more discussions. We have checked that the cutoff dependence can be neglected, as can be

observed in figure 12 in which we show a numerical comparison between the results based

on interpolating the soft function and the slicing method for different cutoffs.

A.2 One-loop soft functions

At the one-loop level, virtual corrections from soft gluons are scaleless (and therefore vanish

in dimensional regularization), and we only need to include real-emission contributions.

The soft function consists of a d-dimensional integral with phase-space cuts which ensure

that the real emission is outside the jets (the inside part is again scaleless). The relevant

soft integral is given by

αs
4π

S(1)
m ({n}, Q0, ε) = (A.3)

= −g2
s

∑
(ij)

Ti,L · Tj,R µ̃4−d
∫

ddk

(2π)d−1

ni · nj
ni · k nj · k

δ(k2)θ(k0)θ(Q0 − v · k)Θout(nk),

with µ̃ = eγEµ2/(4π) with vµ = (1, 0, 0, 0) and v · k = k0. To evaluate the contribution

of the (ni, nj) dipole, we Lorentz transform into a frame where the vectors ni and nj are

back-to-back and the reference vectors take the form

n̂µi =
M

2
(1, 0, 0, 1) , n̂µj =

M

2
(1, 0, 0,−1) , v̂µ =

2

M
(1, 0, β, 0) , (A.4)

where M2 = 2ni ·nj is the invariant mass of the dipole pair, and β =
√

1−M2/4. In this

frame, we parameterize the integration momentum as

k = k̂T (cosh ŷ, sin φ̂, cos φ̂, sinh ŷ). (A.5)
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With d = 4− 2ε, the integral then reads∫
ddk

n̂i · n̂j
n̂i · k n̂j · k

δ(k2)θ(k0)θ(Q0 − k · v̂)Θout(n̂k) =

=
Ωd−3

2

∫ ∞
0

dk̂T

k̂1+2ε
T

∫ ∞
−∞

dŷ

∫ π

0
dφ̂ | sin φ̂|−2εθ(Q0 − k · v̂)Θout(n̂k) , (A.6)

where Ωd is the surface of the d-dimensional unit sphere and Ω1 = 2. Introducing the

auxiliary function fij via

k · v̂ = fij(ŷ, φ̂) k̂T =
2

M

(
cosh ŷ − β cos φ̂

)
k̂T , (A.7)

we can perform the integral over k̂T . This integration yields a soft divergence, which is

renormalized away in the MS scheme. After expanding in ε we then immediately arrive at

expression (2.25) which only involves a finite angular integration which we perform with

the parton shower, which generates its emissions using the variables ŷ and φ̂.

B Monte Carlo algorithm for the interjet energy flow

The inclusion of the NLO soft function is only a minor modification of the algorithm for LL

resummation. In fact, the first three steps are identical to what was shown in appendix B

of [15]. The only difference arises in the last step, where we also compute the soft function.

To record the results of the shower, we fill three histograms: hU contains the LL evolution,

hL the coefficient of the logarithm of the soft function (2.25) and hc its non-logarithmic part.

The shower algorithm for the evolution of the function H(0)
2 ({n1, n2}, Q, µh) to lower

scales involves the following steps:

1. Start at evolution time t = 0 from an initial event E with vectors {n1, n2} and weight

w = 1.

2. Generate a random time step ∆t according to the probability distribution PE(t) =

VE exp(−VE∆t), and insert the event weight w into the histogram hU at time t+ ∆t.

3. Choose a dipole associated with a pair of neighbouring vectors ni and nj in E with

probability Vij/VE . Generate a new random vector nk and multiply the weight by

the factor Rkij/Vij , expressed in the random variables chosen to generate the direction

of the new vector nk.

4. If nk is outside the veto region, add this new vector to the event which then becomes

E′ = {n1, · · · , ni, nk, nj , · · · , n2}, multiply the weight by a factor VE/VE′ and return

to Step 2. Otherwise, add the weight factors

w and ln
2 | sin φ̂|
fij(φ̂, ŷ)

w (B.1)

to hL and hc at time t, go to Step 1 and start a new event.

– 26 –



J
H
E
P
0
4
(
2
0
1
9
)
0
2
0

In terms of these histograms, the soft function correction reads

αs(µs)

4π

∞∑
m=2

〈
H(0)

2 ⊗ U2m ⊗̂S(1)
m

〉
=
Nc

2

αs(µs)

4π

[
−4 ln

µ

Q0
hL(t) + 4hc(t)

]
, (B.2)

while the LL evolution factor is

∞∑
m=2

〈
H(0)

2 ⊗ U2m ⊗̂1
〉

= hU (t) . (B.3)

We discussed the implementation of H(1)
3 in the main text. The shower algorithm is the

same as the one described above, up to the fact that one starts the shower with a three

parton configuration and does not need to compute the one-loop soft function.

C Hard and soft functions for the jet mass

In this appendix we list one-loop ingredients for the jet mass. The ingredients are closely

related to the ones relevant for the interjet energy flow, but the notation is somewhat

different. For the jet mass, the hard function Hq(1)
m denotes the configuration with a quark

on the left and m partons in the right hemisphere, while m simply counts the total number

of hard partons for the interjet energy flow. In the large Nc limit the renormalized one-loop

hard function Hi1 are thus given by

Hq(1)
1 (θ̂1, Q, µ) = Hq̄(1)

1 (θ̂1, Q, µ) =
1

2
δ(θ̂1)H2(Q2, µ) . (C.1)

The factor of one half is present because the LO total cross section is a sum of two identical

contributions with the quark and anti-quark in the left hemisphere, respectively. The δ-

function of θ̂1 = tan(θ1/2) with θi ensures that the right parton flies along n-direction,

opposite to the left parton along n̄.

Since the thrust axis points along the opposite direction of the most energetic parton

for a three-jet configuration, also the hard functions Hi(1)
1 (θ̂1, Q, µ) are the same as for the

interjet energy flow. We use the same variables u and v introduced for the interjet energy

flow to parameterize the angular variables in order to resolve the overlapping divergences

inside the angular integration:

Region I (θg > θq̄) : v = tan
θg
2
, u v = tan

θq̄
2
,

Region II (θg < θq̄) : v = tan
θq̄
2
, u v = tan

θg
2
,

Region III (θq > θq̄) : v = tan
θq
2
, u v = tan

θq̄
2
,

where the regions are depicted in figure 3. For the jet mass case, we no longer impose a

cone constraint (i.e. we can set δ = 1), but we need to add the constraint

ΘT (u, v) = θ
[√

1 + u2v2 − (1 + u) v
]

(C.2)
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to ensure that the thrust axis does not flip. On the level of the bare function, this constraint

was given in (4.4) of [10], but was trivially fulfilled for our choice of the cone angle. Due

to this constraint, the angle of any parton to the thrust axis cannot be larger than π
3 .

Performing the variable transformation and writing the angular convolution as integrals

over u and v as in (2.19) we have

Hq(1)
2,I (u, v,Q, µ) =

1

2
H(1)

3,I (u, v,Q, µ) ΘT (u, v) , (C.3)

Hq(1)
2,II (u, v,Q, µ) =

1

2
H(1)

3,II(u, v,Q, µ) ΘT (u, v) , (C.4)

Hg(1)
2,III(u, v,Q, µ) =

1

2
H(1)

3,III(u, v,Q, µ) ΘT (u, v) , (C.5)

where the factor 1
2 has the same source as in (C.1) and the interjet functions were given

in (2.13), (2.15) and (2.17). The anti-quark hard function Hq̄(1)
2 is equal to the quark

function. For the gluon function, there is also a region θq̄ > θq which is parameterized

analogously and gives an identical contribution.

As explained in [10], the soft function for the light-jet mass is directly related to the coft

function in Sterman-Weinberg dijet cross section defined in [8]. In Laplace space, we have

αs
4π

S̃(1)
m ({n}, τ, ε) = (C.6)

= −g2
s µ̃

2ε
∑
(ij)

Ti,L · Tj,R
∫

ddk

(2π)d−1
δ(k2)θ(k0)e−n̄·k/(τe

γE ) ni · nj
ni · k nj · k

θ(n · k − n̄ · k) .

The evaluation of this expression proceeds along the same lines as for the interjet en-

ergy flow case derived in detail in appendix A. If both emitting partons are in the right

hemisphere, the renormalized one-loop result is given by

S̃(1)
m ({n}, τ, µ) =

Nc

2

m∑
i,j=1

δi,j±1

∫
dŷ

dφ̂

2π

[
−4 ln

µ

τ
+ 4 ln

2 | sin φ̂|
gij(φ̂, ŷ)

]
Θlab

L (ŷ, φ̂) , (C.7)

with the measurement function Θlab
L (ŷ, φ̂) constraining the soft radiation to the left hemi-

sphere, and a function

gij(φ̂, ŷ) =
1

βM

[
2β cosh ŷ + βeŷ tanh yi + βe−ŷ tanh yj − cos φ̂

[
2β2 + tanh yi + tanh yj

]
+ sechyi sechyj sin φ̂ sin(φi − φj)

]
. (C.8)

If one of the two partons is on the left, the function has a collinear divergence, which can

be subtracted, as detailed in section 3. The subtraction was given in (3.11).

D Monte Carlo algorithm for the jet mass distribution

In this appendix we provide the Monte Carlo algorithm used for jet mass resummation,

which is also applicable for other non-global observables with soft-collinear double log-

arithms. Compared to interjet energy flow, we need to subtract the global anomalous
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dimension and the one-loop global soft function. As for the interjet energy case, we fill

three histograms: hU contains the LL evolution, hL the coefficient of the logarithm of the

soft function (C.7) and hc its non-logarithmic part.

The algorithm for evolving Hq1 to lower scales involves the following steps:

1. Start at evolution time t = 0 from an initial event E with vectors {n̄, n1} and weight

w = 1.

2. Generate a random time step ∆t according to the probability distribution PE(t) =

VE exp(−VE ∆t), and insert the event weight w into the histogram hU at time t+∆t.

3. Choose a dipole associated with a pair of neighbouring vectors ni and nj in E with

probability Vij/VE . Generate a new random vector nk and multiply the weight by

the factor Rkij/Vij , expressed in the random variables chosen to generate the direction

of the new vector nk.

4. If nk is in the right hemisphere, add this new vector to the event so that E′ =

{n̄, · · · , ni, nk, nj , · · · , n1}, multiply the weight by a factor VE/V E′ and return to

Step 2. If nk is in the left hemisphere and was emitted from dipole (n̄, nj), we need

to subtract the global one-loop soft function S̃
q (1)
G in equation (3.11). This is achieved

with the weight factors[
1−X(φ̂, ŷ)

]
w and ln

2 | sin φ̂|
g0j(φ̂, ŷ)

[
1−X(φ̂, ŷ)

]
w , (D.1)

which are added to the histograms hL and hC at time t. After filling the histograms

go to Step 1 and start a new event. Otherwise, add the unsubtracted weight factor

w and ln
2 | sin φ̂|
gij(φ̂, ŷ)

w (D.2)

to the respective histograms, go to Step 1 and start a new event.

The quantity VE denotes the subtracted global anomalous dimension VE = VE−V0, where

V0 is the large-Nc result for the subtraction (3.5) obtained by replacing the Casmir operator

Ci in this equation by Nc/2 for a quark jet, or Nc for a gluon jet, respectively.

E Ingredients for jet mass resummation

For convenience, we collect here the perturbative results for ingredients used in the resum-

mation formula for jet mass distribution. The evolution factors at NLL accuracy are given

by

S (ν, µ) =
γcusp

0

4β2
0

{
4π

αs (ν)

(
1− 1

r
− ln r

)
+

(
γcusp

1

γcusp
0

− β1

β0

)
(1− r + ln r) +

β1

2β0
ln2 r

}
,

Aγ (ν, µ) =
γ0

2β0
ln r , (E.1)

– 29 –



J
H
E
P
0
4
(
2
0
1
9
)
0
2
0

with r = αs(µ)/αs (ν). The expressions of the anomalous dimensions used in our paper

are

γcusp
0 = 4 , γcusp

1 =

(
268

9
− 4π2

3

)
CA −

80

9
TFnf ,

γ
Jq
0 = −3CF , c

Jq
1 = CF

(
7− 2π2

3

)
, γ

Jg
0 = −β0 ,

β0 =
11

3
CA −

4

3
TFnf , β1 =

34

3
C2
A −

20

3
CATFnf − 4CFTFnf . (E.2)

The LO integrated jet mass distribution is written as

1

σ0

∫ ρ

0
dρ̄
dσLO

dρ̄
= 1+CF

αs
2π

[
− ln2 ρ− 3

2
lnρ+

1

4
+
π2

6
−2Li2

(
ρ

1−ρ

)
+

9ρ2

4
+3ρ (E.3)

− ln2(1−ρ)+
3

2
(1−2ρ) ln(1−2ρ)+

[
3ρ+2ln(1−ρ)

]
lnρ

]
.

The integrated light-jet mass distribution is trivial at this order∫ ρ

0
dρ̄

dσLO

dρ̄
= σ0

(
1 + CF

3αs
4π

)
= σ , (E.4)

because the light jet has zero mass for three partons.
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[49] S. Höche, F. Krauss and S. Prestel, Implementing NLO DGLAP evolution in parton showers,

JHEP 10 (2017) 093 [arXiv:1705.00982] [INSPIRE].
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