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SUMMARY

The carboxysome is a protein-based organelle for
carbon fixation in cyanobacteria, keystone organ-
isms in the global carbon cycle. It is composed of
thousands of subunits including hexameric and
pentameric proteins that form a shell to encapsulate
the enzymes ribulose 1,5-bisphosphate carbox-
ylase/oxygenase and carbonic anhydrase. Here, we
describe the stages of carboxysome assembly and
the requisite gene products necessary for progres-
sion through each. Our results demonstrate that,
unlike membrane-bound organelles of eukaryotes,
in carboxysomes the interior of the compartment
forms first, at a distinct site within the cell. Subse-
quently, shell proteins encapsulate this procarboxy-
some, inducing budding and distribution of
functional organelles within the cell. We propose
that the principles of carboxysome assembly that
we have uncovered extend to diverse bacterial
microcompartments.
INTRODUCTION

In contrast to the membrane-bound organelles of eukaryotes,

many bacteria sequester diverse metabolic pathways in pro-

tein-based organelles, bacterial microcompartments (BMCs)

(Bobik, 2006; Cannon et al., 2001; Cheng et al., 2008; Kerfeld

et al., 2010; Yeates et al., 2008). BMCs structurally resemble

icosahedral viral capsids; hexameric and pentameric protein

subunits comprise a shell that encapsulates densely packed

enzyme particles. This compartmentalization of reactions pro-

vides a means to increase substrate concentration thereby

improving the catalytic efficiency of encapsulated enzymes.

The shell also provides a barrier to prevent potentially toxic inter-

mediates from diffusing into the cytoplasm. While bacterial

microcompartments were long thought to be a rarity, glimpsed

only occasionally in electron micrographs, it is now clear that

many bacteria contain BMCs. In fact, the presence of BMC shell

homologs in bacterial species across 13 phyla suggests that

metabolic compartmentalization is a common feature among

diverse prokaryotes (Kerfeld et al., 2010).
C

Three types of BMCs that have been extensively character-

ized are involved in the metabolism of 1,2-propanediol (Pdu

metabolosome) (Bobik et al., 1999; Parsons et al., 2008),

ethanolamine (Eut metabolosome) (Brinsmade et al., 2005;

Kofoid et al., 1999; Stojiljkovic et al., 1995), and in CO2 fixation

(carboxysome) (Cannon et al., 1991; Price and Badger, 1991;

Shively et al., 1973); common features of the encapsulated

pathways are the presence of a reactive or volatile intermediate

or an oxygen sensitive enzyme (Kerfeld et al., 2010; Yeates

et al., 2008).

The carboxysome is a BMC that plays a central role in the

Calvin-Benson-Bassham cycle in cyanobacteria and some che-

moautotrophs (Figure 1A) (Price et al., 1992; Shively et al., 1973);

it contributes to amajor fraction of the Earth’s primary productiv-

ity by participating in carbon fixation in marine, freshwater, and

terrestrial ecosystems. The carboxysome is the core component

of the cyanobacterial carbon concentrating mechanism. In the

carboxysome the concentration of CO2 is increased in proximity

to the carbon fixing enzyme ribulose 1, 5-bisphosphate carbox-

ylase/oxygenase (RuBisCO) thereby reducing its reaction with

O2, a competing substrate (Cannon et al., 2001; Marcus et al.,

1992; Price et al., 2008).

The majority of the morphologically and ecophysiologically

diverse cyanobacteria, including the model organism Synecho-

coccus elongatus PCC 7942 (Synechococcus PCC7942),

contain b-carboxysomes that encapsulate plant-like, Form 1B

RuBisCO. Because carbon fixation is essential for photoautotro-

phic growth,Synechococcus PCC7942 positions carboxysomes

along the longitudinal axis of the cell to ensure distribution of the

organelle to each daughter cell (Savage et al., 2010). Formation

of additional functional carboxysomes de novo requires the

coordinated assembly of thousands of individual protein sub-

units, ultimately leading to the encapsulation of hundreds of

copies of the enzymes RuBisCO and carbonic anhydrase within

a protein shell. However, how this intricate self-assembly pro-

cess is accomplished is unknown.

Many of the structural and catalytic components of the car-

boxysome have been identified through genetic screens (Price

and Badger, 1989; Price and Badger, 1991), including the ccm

operon that encodes the shell proteins (CcmK2, CcmL, and

CcmO) and two other proteins, CcmM and CcmN, thought to

participate in the organization of the carboxysome interior (Kin-

ney et al., 2012; Long et al., 2007) (Figure 1B). In Synechococcus

PCC7942, the genes encoding RuBisCO (rbcL and rbcS) are
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Figure 1. A System to Investigate Carboxysome Biogenesis
(A) The carboxysome shell is comprised of hexameric (blue) and pentameric (yellow) proteins that encapsulate key enzymes of the Calvin-Benson-Bassham cycle

(CBB-Cycle) essential for carbon fixation.

(B) Structural (CcmM, black; CcmN, magenta) and catalytic components (RubisCO, green; CcaA, red) of the b-carboxysome are located in the ccm operon and

elsewhere in the chromosome of Synechococcus elongatus PCC 7942. The DK2-O strain was generated by deletion of the ccm operon.

(C) Microscopic characterization of WT and DK2-O strains showing presence (WT) and absence (DK2-O) of carboxysomes (labeled with C).

(D) An inducible version of the ccm operon was introduced into the DK2-O mutant to generate the DK2-O+ strain.

See Figure S1 for additional experimental details.
located adjacent to the ccm operon, while genes encoding addi-

tional carboxysome components (ccmK3, ccmK4, ccmP, and

ccaA) reside in distant loci and are not essential for carboxysome

formation (Rae et al., 2012; So et al., 2002). X-ray crystallo-

graphic studies have revealed detailed structures of shell pro-

teins (Kerfeld et al., 2005; Tanaka et al., 2008), providing the

foundation for an atomic level model of a carboxysome resem-

bling an icosahedron.

Genetic deletion analysis has led to the identification of the

protein components that are essential for carboxysome forma-

tion including CcmK, CcmM, and CcmN; knockouts of each

result in strains lacking carboxysomes. Recent biochemical

studies have shed some light on peptide sequences involved

in facilitating interactions between the shell and the interior of

the carboxysome and of other BMCs (Fan et al., 2012; Kinney

et al., 2012). In the cyanobacterium Synechococcus PCC7942,

one such peptide, on the C terminus of CcmN, is critical for car-

boxysome formation (Kinney et al., 2012). Furthermore, domains

resembling the small subunit of RuBisCO (RbcS-like domains) on

the C terminus of CcmM are also required components of the

carboxysome (Long et al., 2010). While these studies identify

the essential structural components carboxysomes, they do

not provide information on the hierarchy of protein-protein inter-

actions that organize the carboxysome as it forms. Investigation

of the assembly of carboxysomes has relied on static images

provided by electron microscopy (Iancu et al., 2010; Orus

et al., 1995; Price and Badger, 1991); the inherent difficulty in

unambiguously identifying assembly intermediates in these

studies has left amajor gap in our understanding of the dynamics

of the assembly process.
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In this work, we designed a system to specifically induce

carboxysome formation in vivo in Synechococcus PCC7942.

Fluorescently tagged carboxysome components were used to

monitor assembly using time-lapse microscopy. By tracking

carboxysome formation with transmission electron microscopy,

high-resolution images of assembly intermediates were cap-

tured. The architectural role of each gene product in the ccm

operon was determined by systematically deleting each gene

and monitoring the progression of carboxysome formation in

the resulting mutant. Measurements of growth and photosyn-

thetic activity confirmed the function of the carboxysomes

generated by this system, providing additional validation criteria

for constructing our model for assembly. The results of these

studies enabled us to delineate the assembly pathway for the

carboxysome and identify the specific ccm gene products

required for progression through each stage of assembly.

RESULTS

A System to Investigate Dynamics of Carboxysome
Biogenesis in Synechococcus PCC7942
An inducible system was designed to visually investigate car-

boxysome assembly in vivo, in order to study carboxysome

biogenesis in the cyanobacterium Synechococcus PCC7942.

First, we replaced the entire ccm operon with a KmR cassette

to generate the DccmK2-ccmO (DK2-O) deletion strain (Figures

1B and S1 available online). Carboxysomes were not observed in

the DK2-O strain using transmission electron microscopy (TEM);

expression of RbcL-GFP or RbcL-CFP at a neutral site (NSII)

with the PccmK2 promoter in the DK2-O background that also



Figure 2. Physiology of Strains in Air and 3% CO2

(A) Growth of strains in the presence and absence of IPTG. Ten-fold serial

dilutions were plated and imaged after 72 hr.

(B) Photosynthetic capacity of photosystem II (Fv/Fm) after 24 hr growth in air

or 3% CO2. Data represent mean ± s.d. for three biological replicates; Means

were compared to the WT (two-tailed Student’s t test, n = 3). *p < 0.05, **p <

0.01, ***p < 0.001.

(C) Growth (OD720 nm) and Fv/Fm following transfer from 3%CO2 to air without

IPTG.

(D) Recovery of DK2-O+ strain with 1 mM IPTG after 24 hr growth in air (C). See

Figure S2 for additional data.
contained native RbcL resulted in diffuse fluorescence signal

throughout the cell (Figures 1C and S1). Next, we generated an

inducible ccm operon by replacing the native ccm promoter

(PccmK2) with an isopropyl b-D-1-thiogalactopyranoside (IPTG)-

inducible promoter (Ptrc). The Ptrc::ccmK2-ccmO operon was

then introduced into the chromosome of the DK2-O mutant

at a second neutral site (NSI) to generate the DK2-O+ strain

(Figure 1D).

To investigate the structural roles of each ccm gene product,

we also generated inducible ccm operon variants systematically

lacking each gene without drastically altering the upstream inter-

genic regions and targeted them to NSI (Figure 1D). Other fluo-

rescently tagged carboxysome proteins were expressed from

NSII in the DK2-O+ strain to visually monitor the progression of

carboxysome formation (Figure 1D).

Biogenesis of Functional Carboxysomes Can Be Tightly
Controlled
Cyanobacterial strains lacking functional carboxysomes die

in air but are able to survive in an atmosphere containing

3% CO2. This high-CO2 requiring phenotype (HCR) provided

a robust screen for the correct assembly of carboxysomes;

only strains with functional carboxysomes can survive in air.

Using growth in air as a proxy for functional carboxysomes,

we compared growth of the WT, DK2-O, DK2-O+, and

DK2-O+/RbcL-GFP strains in air and 3% CO2 in the presence

and absence of 1 mM IPTG (Figure 2A). All strains grew

similarly at 3% CO2. The DK2-O strain was unable to grow

in air, as expected. In contrast, the DK2-O+ strains were

only able to survive in air in the presence of IPTG (Figures 2A

and S2). The dependence on IPTG for growth of the DK2-O+

strains in air was apparent in liquid and solid medium (Fig-

ure S2). A threshold of 5 mM IPTG was required for growth

in air, however, at this concentration cells appeared chlorotic

and exhibited reduced growth (Figure S2C); an IPTG con-

centration of 0.2–1 mM was used for subsequent experiments.

These results indicate that carboxysome biogenesis can be

tightly controlled by modulating the expression of the ccm

operon.

Photosynthetic Capacity of the DK2-O+ Strain following
Induction of the ccm Operon Is Equivalent to the WT
In photosynthetic organisms, CO2 fixation is the major sink for

the reducing equivalents and ATP derived from photochemistry

(Krall and Edwards, 1992) (Figure 1A). Disruption of carbon

fixation ultimately results in damage to photosystem II (PSII),

the site of water oxidation (Takahashi and Murata, 2005). We

estimated the relative photosynthetic capacity of PSII (Fv/Fm)

by measuring chlorophyll fluorescence of dark-adapted cells

grown in air and 3% CO2 in the presence or absence of 1 mM

IPTG (Figure 2B). The cells’ ability to produce carboxysomes

was positively correlated with Fv/Fm levels in air, and negatively

correlated in 3% CO2 (Figure 2B). The rapid drop in Fv/Fm levels

of the DK2-O+ strain and growth inhibition after transfer from 3%

CO2 to air (Figure 2C) was quickly restored following induction of

the ccm operon (Figure 2D). These results indicate that the car-

boxysome directly influences the photosynthetic capacity of the

cell by generating a sink for cellular reducing equivalents and
C

that upon induction of the ccm operon, the physiology of the

DK2-O+ strain is comparable to the WT.

Visualization of Carboxysome Biogenesis In Vivo by
Time-Lapse Fluorescence Microscopy and TEM
Next, we investigated carboxysome biogenesis in DK2-O+

strains constitutively expressing RbcL-GFP or RbcL-CFP follow-

ing induction of the ccm operon using time-lapse fluorescence

microscopy (Figure 3 and Movies S1 and S2). Upon induction

of the ccm operon, the initially diffuse fluorescent signal rapidly

(�30min) coalesced into either a polar or midcell aggregate (Fig-

ure 3A and Movie S1). In rare instances two particles formed

simultaneously; over time one was depleted at the expense of

the other (i.e., the size of one particle increased as the size of

the other particle decreased), ultimately leading to a single fluo-

rescent punctum (Movie S1). A sedimentation assay was also

used to monitor the aggregation of RuBisCO in the DK2-O+

strain, which does not contain any fluorescently labeled protein.

RuBisCO was initially retained in the soluble (S) fraction of cell-

free lysates following centrifugation but the amount in the pellet

(P) fraction increased as the time course progressed as deter-

mined biochemically by western blot using an a-RbcL antibody

(Figure 3B). After �2.5 hr postinduction, new particles emerged
ell 155, 1131–1140, November 21, 2013 ª2013 Elsevier Inc. 1133



Figure 3. Visualization of Carboxysome Biogenesis
(A) Aggregation of RbcL-CFP (cyan) in DK2-O+/RbcL-CFP/CcmK2-YFP strain

following induction of ccm operon (Movie S1). Scale bars, 1 mm; Chl-a, red.

(B) Western blot showing soluble (S) and pelletable (P) fractions of DK2-O+

lysate probed with a-RbcL.

(C) Progression of carboxysome formation in DK2-O+ expressing RbcL-GFP

(green) is marked with white arrows (Movie S2). Scale bars, 1 mm; Chl-a, red.

(D) TEM images of DK2-O+ strain. Carboxysome, C; procarboxysome, PC.

(E) Budding carboxysomes in DK2-O+/RbcL-GFP (green) strain (frame 55/200,

Movie S2) and inDK2-O+ strain with TEM. Two representative TEM images are

shown.

(F) Procarboxysomes and carboxysomes can be morphologically distin-

guished. For additional data refer to Figure S3 and Movies S1 and S2.
from the polar RuBisCO aggregates (Figure 3C and Movies S2

and S2). Over the course of 10 hr (3 min interval between acqui-

sitions) more than 100 individual budding events were observed

(Figure S3). Moreover, following the rapid development of

the primary particle, the number of new particles appeared to

increase linearly over time, indicating that the newly formed

particles are not dividing; this would be expected to result in

an exponential increase in particle number (Figure S3). Once

separated from the aggregate, the newly formed particle typi-
1134 Cell 155, 1131–1140, November 21, 2013 ª2013 Elsevier Inc.
cally migrated to a more central position within the cell where it

remained.

To further investigate the nature of the developing particle,

TEM was used to follow induction of carboxysome formation in

the DK2-O+ strain (Figure 3D). The cells used for TEM were

collected from the same culture used for western blot analysis

(Figure 3B). Consistent with the fluorescence microscopy data,

an electron dense polar body (Figure 3D) that we have desig-

nated as a procarboxysome (PC) appeared 1 hr postinduction.

Polyhedral structures were first observed in the cell in addition

to the PC after 3 hr. Multiple carboxysomes could be identified

in the cell by the 48 hr time point. It is evident that the new par-

ticles emerging from the PC are carboxysomes based on their

ultrastructure and the tight correlation between the induction of

the ccm operon and the ability of the cells to survive in air.

Budding carboxysomes were frequently observed in time-lapse

movies and could also be identified in electron micrographs of

cells harvested during induction of the carboxysome operon

(Figure 3E). Two representative budding events are shown; typi-

cally a rounded, electron dense structure was observed adjacent

to a polyhedral body. Carboxysomes and PCs could bemorpho-

logically distinguished in electron micrographs (Figures 3F and

S3E). PCs were typically rounded electron dense structures

with no discernible internal order; in contrast, carboxysomes

typically exhibited a polyhedral profile and contained regularly

spaced particles (Figure 3F). The spacing was particularly

apparent in functional, disk-shaped carboxysomes that are

frequently produced in a strain expressing CcmO-YFP. An

average spacing of �11 nm (Figure 3F) is consistent with that

of packed L8S8 RuBisCO holoenzymes, in agreement with a pre-

vious study (Kaneko et al., 2006).

Elucidating the Hierarchy of Protein-Protein
Interactions in Assembly of the Carboxysome
To determine the role of individual ccm gene products in the

sequence of steps in carboxysome formation, inducible ccm

operon variants lacking each gene (DccmK, DccmL, DccmM,

DccmN, and DccmO) were generated (Figure 4); the resulting

strains were all HCR (Figures 4G–4L), in agreement with previous

studies (Kinney et al., 2012; Ludwig et al., 2000; Marco et al.,

1994; Price et al., 1993). Using RbcL-GFP as a visual marker,

the phenotypes resulting from the expression of the ccm operon

variants were analyzed 48 hr postinduction with 1 mM IPTG (Fig-

ures 4A–4F).

The Small Subunit-Like Domains of CcmM Are Required
for Aggregation of RuBisCO and Initiation of
Carboxysome Formation
Carboxysome formation was apparent in the control strain

following induction (DK2-O+/RbcL-GFP) (Figure 4A), conferring

the ability to survive in air (Figure 4G). In contrast, RbcL-GFP re-

mained soluble in the DccmM mutant (Figure 4D). CcmM con-

tains an N-terminal g-carbonic anhydrase (g-CA) (Peña et al.,

2010) domain followed by three RbcS-like domains (Figure S4A).

Two specific translation products, a full-length 58 kDa (M58) and

a 35 kDa (M35) product, containing only the three RbcS-like

domains, are crucial for carboxysome formation (Long et al.,

2010). To further characterize the role of the RbcS-like domains,



Figure 4. Role of ccmGene Products during

Carboxysome Biogenesis

(A–F) RbcL-GFP (green) was visualized before and

after 48 hr induction of ccm-operon variants

missing individual genes. Red channel is Chl-a.

Scale bars, 1 mm.

(G–L) Growth of strains in air or 3% CO2 in the

presence or absence of 1 mM IPTG. Physiological

data correspond to ccm operon variants (A)–(F) in

the same row. Only the full-length ccm operon is

able to confer growth in air upon addition of IPTG.

All strains are able to survive in 3% CO2. Also see

Figure S4 for additional data related to the function

of CcmM in carboxysome biogenesis.
we coexpressed them fused to YFPwith RbcL-CFP in theDK2-O

background (Figure S4B). Expression of M35-YFP or a truncated

version (23 kDa; M23) containing two RbcS-like domains was

sufficient to nucleate RbcL-CFP in the DK2-O mutant. In

contrast, a single RbcS-like domain (11 kDa; M11) was not. Simi-

larly, when GFP-tagged RbcS-like domains were expressed in

WT cells, only the M35-GFP and M23-GFP appeared to exhibit

carboxysome localization, while expression of M11-GFP re-

sulted only in diffuse signal throughout the cell (Figure S4C).

Expression of these constructs did not appear to alter the phys-

iology of the parent strain; DK2-O strains expressing M35-YFP,

M23-YFP, or M11-YFP fusion proteins exhibited HCR pheno-

types and expression of the equivalent GFP-tagged fusion pro-

teins in the WT strain did not affect its ability to survive in air.

These results show that two or more RbcS-like domains of

CcmM are required for initiation of carboxysome (PC) formation.

Shell Formation Is Dependent on the Association of
CcmN with the PC, followed by the Concomitant
Addition of CcmK2, and CcmO
The g-CA domain of CcmM physically interacts with the N termi-

nus of CcmN (Cot et al., 2008; Kinney et al., 2012). Thus, it is

likely that CcmN associates with the PC upon aggregation of

RuBisCO by CcmM. Carboxysome biogenesis stalls following

PC formation in DccmN strains, resulting in a single, polar

RbcL-GFP aggregate (Figure 4E). In a fraction of theDccmN cells

(�8%, n = 1,110), a smaller fluorescent spot could be seen in

addition to the PC; these were never observed in the DccmK2

(Figure 4B) or DccmO (Figure 4F) strains. These foci could repre-

sent aborted PCs.

The phenotype of the DccmN strain is comparable to that of

the shell protein mutant strains DccmK2 (Figure 4B) and DccmO
Cell 155, 1131–1140, No
(Figure 4F). The similarity in phenotype

among these strains is notable because

CcmN contains a C-terminal peptide

(EP; encapsulation peptide) that interacts

with CcmK2 and is essential for carboxy-

some formation; in strains lacking the

encapsulation peptide only a polar aggre-

gate is formed (Kinney et al., 2012).

Therefore, we propose that CcmN re-

cruits the shell protein CcmK2 to the

PC. Consistent with this hypothesis, in
the absence of CcmN, CcmK2 did not associate with the PC

and carboxysomes were not produced (Figure 5A). Strikingly,

in the DccmN mutant, RbcL-CFP aggregated normally into the

PC, while CcmK2-YFP began as a single, polar, fluorescent

spot and ended up diffuse across the cell. Dispersal of the

CcmK2-YFP focus was dependent on the presence of native

(unlabeled) CcmK2, since this process did not occur in the

DccmK2 strain; the fluorescence remained localized in a single

spot. The propensity of CcmK2-YFP to remain fixed in an aggre-

gate could explain why it alone is unable to rescue the HCR

phenotype of DccmK2 strains. In addition to the requirement

for CcmN (Figure 5B), localization of CcmK2 to the PC was

dependent on the presence of CcmO (Figure 5C). Unlike

CcmK2-YFP, CcmO-YFP exhibits a diffuse fluorescence signal

throughout the cell prior to the induction of the ccm operon (Fig-

ure 5C). Upon induction of the full ccm operon, CcmO-YFP forms

disk-like aggregates adjacent to the PC. However, CcmO-YFP

remains soluble in the DccmK2 mutant and is unable to aggre-

gate. CcmK2-YFP becomes soluble upon induction in the

DccmO strain, but carboxysomes are not formed. Together,

these data demonstrate that shell formation around the PC

requires CcmN first, and then the concomitant presence of

CcmK2 and CcmO.

The Pentameric Vertex Protein, CcmL, Is Required for
Budding of Carboxysomes from the PC
The carboxysome shell is capped by the pentameric vertex pro-

tein, CcmL (Figure 1A) (Tanaka et al., 2008). In the absence of

CcmL, elongated structures developed from the PC in themajor-

ity of cells (�92%, n = 1371), while a few cells (�6%, n = 1371)

appeared similar toWT (Figure 4C). PCs are observed prior to in-

duction in theDccmL strain. This is likely due to leaky expression
vember 21, 2013 ª2013 Elsevier Inc. 1135



Figure 5. Interactions between Shell Pro-

teins and Carboxysome Interior

(A) CcmN is required for recruitment of CcmK2

(green) to the PC. Solubilization of CcmK2-YFP

depends on unlabeled CcmK2.

(B) CcmK2-YFP (green) associates with the PC

and carboxysome.

(C) Shell formation requires simultaneous pres-

ence of CcmO (green) and CcmK2.

(D) Elongated carboxysomes in DccmL are

encapsulated by CcmK2 and CcmO.

Scale bars, 1 mm. The Chl-a channel was used as a

template for cell outlines. RbcL-CFP, red (A, B,

and C). Chl-a, red (D). See also Figures S1 and S5.
of ccmM, resulting from the disruption of the ccm operon just up-

stream of ccmM. Some leakage is also observed in the control

strain prior to induction, but is not seen in the DccmM mutant

(Figure 4D). Rod-like carboxysomes are rare inWT cells express-

ing RbcL-GFP (�3%, n = 1,515), but were occasionally observed

in DK2-O+/RbcL-GFP or RbcL-CFP strains (Figure S5 and

Movies S1 and S2). The elongated carboxysomes in the DccmL

mutant are encapsulated with a shell that contains CcmK2-YFP

and CcmO-YFP (Figure 5D). Encapsulation appears to drive

elongation by constricting the diameter of the PC, while incorpo-

ration of the pentamer promotes shell closure and subsequent

budding.

AModel for Carboxysome Biogenesis in Synechococcus

PCC7942
Together these data enabled us to generate a stepwisemodel for

carboxysome biogenesis (Figure 6). First, soluble RuBisCO coa-

lesces into a PC in a process dependent on CcmM, specifically

theM35 translation product containing three RbcS-like domains.

CcmN is added to the PC through interactions with N-terminal

g-CA domain of full-length CcmM (Cot et al., 2008; Kinney

et al., 2012). The CcmN C-terminal encapsulation peptide (Kin-

ney et al., 2012) on the surface of the PC interacts with assem-

bling shell proteins; shell formation is dependent on the presence

of both CcmK2 and CcmO. Upon incorporation of CcmL, fully

encapsulated carboxysomes are released from the PC and

migrate to a new cellular position, likely through interactions

with the cytoskeleton (Savage et al., 2010).

Fate of Carboxysomes during Growth of Cyanobacteria
During stationary phase, Synechococcus PCC7942 cells elon-

gate into extended filaments due to reduced cell division as a
1136 Cell 155, 1131–1140, November 21, 2013 ª2013 Elsevier Inc.
result of nutrient depletion (Goclaw-

Binder et al., 2012). Microscopic exami-

nation of stationary phase cells grown in

air and expressing RbcL-CFP (cyan) and

M35-YFP (green) reveals that these highly

elongated, filamentous cells contained

numerous carboxysomes (Figures 7 and

S6). Moreover, endogenous chlorophyll-

a (red) fluorescence was only observed

in cells containing carboxysomes. The

rest of the cells exhibited no detectable
chlorophyll-a signal and only contained soluble RbcL-CFP. The

presence of chlorophyll suggests that the elongated cells con-

taining carboxysomes are photosynthetically active and viable.

Moreover, these results indicate that carboxysome stability

could be an important factor in maintaining cellular fitness during

extended periods of growth and during nutrient limitation.

DISCUSSION

The cyanobacterial carboxysome is a large (�300 MDa) self-

assembling macromolecular bacterial organelle for CO2 fixation.

Understanding the assembly of functional carboxysomes has

been hampered by experimental limitations in spatial and tem-

poral resolution. High-resolution images of carboxysomes have

been acquired using electron microscopy, however, these static

images have not enabled researchers to confidently identify in-

termediates in the carboxysome biogenesis pathway (Iancu

et al., 2010). During steady-state growth of cyanobacteria, it is

likely that only a subset of the cells are assembling carboxy-

somes at any one instant. Moreover, one rarely observes inter-

mediates in an embedded thin section because the majority of

carboxysomes are not undergoing biogenesis. Our system uti-

lizes an inducible system to turn on carboxysome biogenesis

simultaneously in an entire culture (Figure 1). This synchroniza-

tion has enabled us to identify each step of carboxysome

biogenesis using high-resolution electron microscopy and visu-

alize the process in real-time using fluorescence microscopy

(Figure 3 and Movies S1 and S2).

While heterologous expression and characterization of car-

boxysomes and other BMCs in E. coli has provided insight into

the components necessary for assembly (Bonacci et al., 2012;

Choudhary et al., 2012; Parsons et al., 2008), using the native



Figure 6. Model of Carboxysome Biogenesis in Synechococcus

PCC7942

Prior to carboxysome formation, RuBisCO exists as a soluble protein. Full-

length (M58) and short (M35) forms of CcmM aggregate RuBisCO into the

procarboxysome (PC). CcmN is brought to the PC through interactions with

CcmM, where the C-terminal encapsulation peptide (EP) recruits shell

proteins, ultimately leading the encapsulation by CcmK2 and CcmO. Encap-

sulation of the PC and release of functional carboxyomes requires the incor-

poration of the pentameric vertex protein, CcmL. Once fully encapsulated, the

interior of the carboxysome no longer interacts with the PC and the fully formed

carboxysome separates from the PC. This process is repeated until the PC has

been depleted.

Figure 7. Persistence of Carboxysomes in Stationary Phase Cells

(A and B) Elongated cells typically found in stationary phase Synechococcus

7942 cells contain carboxysomes. The cells pictured were grown on solid

BG11 media in air for approximately 30 days. Only cells containing carbox-

ysomes also exhibit Chl-a fluorescence (red) indicating that these cells are

photosynthetically active and viable. RbcL-CFP (cyan) is diffuse in cells lacking

carboxysomes. ‘‘CcmM’’ M35-YFP (green) was used as a marker to track

carboxysomes. Scale bars, 10 mm. Individual channels used to create these

composite images are shown in Figure S6.
host provided us a strong selection for the generation of func-

tional carboxysomes, since they are essential in cyanobacteria

for growth in air (Figures 2 and S2). In addition, we were able

to measure the effects of enzyme encapsulation on the physi-

ology of the host strain (Figures 2B and 2C). We found that the

photosynthetic capacity of the cell was directly related to the

presence or absence of carboxysomes (Figures 2B and 2C).

As expected, we found that carboxysomes are required for

photosynthesis and growth in air, but we also found that they

likely play a role in survival during stationary phase (Figure 7).

The increased Fv/Fm observed in carboxysome-less cells grown

in 3% CO2 is likely due to increased levels of photorespiration

catalyzed by free RuBisCO. In fact, this strain provides an ideal

background to study cellular physiology during carbon fixation
C

in cyanobacteria by directly modulating the carbon fixing appa-

ratus in vivo.

Prior to this study, it was known that each gene in the ccm

operon is essential for growth in air and for carboxysome forma-

tion (Kinney et al., 2012; Ludwig et al., 2000; Marco et al., 1994;

Price et al., 1993). However, the specific role for each of the com-

ponents was based on a static view provided by genetic and

microscopic analysis. Our experimental system enabled us to

combine techniques with high spatial (TEM) and temporal

(fluoresecence microscopy and physiological measurements)

resolution to systematically investigate the role played by each

product of the ccm operon during carboxysome assembly (Fig-

ures 4 and 6).

Carboxysome biogenesis in Synechococcus PCC7942 is

initiated uponaggregation of RuBisCO in aprocess that is depen-

dent on CcmM (Figure 4D), specifically the RbcS-like domains

(Figure S4). During this process, RuBisCO rapidly coalesces

into a discrete punctum, typically at a cellular pole (Figure 3).

The resulting PC contains disordered RuBisCO particles (Fig-

ure 3F) that are not yet encapsulated. These results clearly

demonstrate that the interior components of the carboxysome

assemble first, prior to encapsulation, in contrast to speculation

based on TEM images that the shell is formed first and then

packed with RuBisCO (Price and Badger, 1991). Moreover, our

results are consistent with models in which RuBisCO appears

to be simultaneously aggregated and encapsulated, leading to

the presence of partially formed carboxysomes (Iancu et al.,

2010). However, the carboxysomes studied by Iancu et al. (from

chemoautotrophic bacteria) do not containCcmMand themech-

anism for RuBisCO aggregation in these types of carboxysomes

is unknown. Stalled products of carboxysome formation could be

the result of insufficient amounts of RuBisCO or shell proteins.

In addition to a role in formation of the PC, CcmM has been

shown to physically interact with CcaA (Cot et al., 2008) and

CcmN (Kinney et al., 2012), providing a means for these pro-

teins to associate with the procarboxysome. CcmN contains

an encapsulation peptide that has been shown to interact with
ell 155, 1131–1140, November 21, 2013 ª2013 Elsevier Inc. 1137



the major shell protein CcmK2 (Kinney et al., 2012). We found

that CcmN is required for shell proteins to associate with the

PC (Figures 4 and 5). Our results also indicate that assembly of

shells on the PC drives the budding of new carboxysomes. In

the absence of CcmN, only PCs form and budding is not

observed. Assembly of the carboxysome shell is also dependent

on the simultaneous presence of both CcmK2 and CcmO (Fig-

ure 5). In fact, soluble CcmO-YFP was able to assemble into

disks adjacent to the PC only if CcmK2was present. Interactions

between CcmK2 and CcmO have been previously observed

(Rae et al., 2012), however, the molecular arrangement of spe-

cific proteins within the carboxysome shell is thus far unknown.

Moreover, genes encoding the shell proteins ccmK3, ccmK4,

and ccmP are present in the DK2-O background. While not

essential for carboxysome formation, these shell proteins could

play an important role in defining the biochemical properties of

the shell (Cai et al., 2013; Rae et al., 2012).

The pentameric vertex protein CcmL is essential for carboxy-

some function because removal of the ccmL gene from the ccm

operon resulted in a HCR phenotype (Figures 4C and 4I) as pre-

viously described for a ccmL insertionmutant (Price and Badger,

1989). In the absence of CcmL, rod-like carboxysomes encapsu-

lated by CcmK2 and CcmO (Figure 5D) are formed in themajority

of cells, often protruding from the PC (Figures 4C, 5D, S5, and 6).

Our results indicate that the protrusion of the elongated carbox-

ysome from the PC is driven by shell formation while incorpora-

tion of the pentamer allows closure of the compartment and

subsequent budding from the PC. Some DccmL cells also

contain apparently normal looking carboxysomes (Figures 4C

and 4I). We suspect they are nonfunctional since the DccmL

strain is unable to survive in air. Occasionally, we observed

DccmL cells without any fluorescent signal. This may be the

result of asymmetric distribution of the elongated structure

following cell division. In fact, the elongated carboxysomes

were often seen in the midcell constriction, preventing cell divi-

sion (Figure S5A). Previous work found that pentameric vertex

proteins are required to prevent leakage of CO2 from carboxy-

somes in Halothiobacillus neapolitanus (Cai et al., 2009). How-

ever, in the deletion strains lacking both the of the vertex proteins

of the H. neapolitanus carboxysome, only a small fraction of the

cells contained elongated carboxysomes. The reduced number

of elongated carboxysomes in this strain compared to theDccmL

presented heremay be due to differences in the level of RuBisCO

available for carboxysome biogenesis in a deletionmutant during

steady-state growth compared to our inducible system with the

capacity to generate multiple carboxysomes de novo.

Our model for carboxysome biogenesis provides a specific

role for each gene product of the ccm operon. Since assembly

pathways for protein complexes are under strong evolutionary

selection (Marsh et al., 2013), and because BMCs are defined

by a common shell architecture, we propose that the principles

that we have deduced for carboxysome assembly apply to

diverse BMCs. For example, disruption of the Pdu metabolo-

some shell protein, PduA, in Salmonella enterica results in a large

polar body that contains the major enzyme of the compartment

interior, diol dehydratase, and is reminiscent of the procarboxy-

some (Havemann et al., 2002). In BMCs that apparently lack an

interior scaffolding protein like CcmM, organization of the interior
1138 Cell 155, 1131–1140, November 21, 2013 ª2013 Elsevier Inc.
could be accomplished through the oligomerization of multi-

meric enzymes prior to encapsulation (Bovell and Warncke,

2013) followed by interactions between the shell and interior

components facilitated by encapsulation peptides (Fan et al.,

2012; Kinney et al., 2012). Accordingly, understanding the

assembly pathway of the carboxysome provides the conceptual

framework for investigating the biogenesis of medically and bio-

technologically important BMCs and for constructing novel bac-

terial organelles for bioengineering applications.

In summary, this is the first description of the biogenesis of a

bacterial organelle in vivo. In contrast to eukaryotic organelles

to which cargo is targeted across the bounding membrane, in

the hierarchy of steps in carboxysome assembly, those for

form follow those for function: the carboxysome assembles its

contents into a procarboxysome first; encapsulation in the

delimiting protein shell is the penultimate step before budding

and cellular localization.

EXPERIMENTAL PROCEDURES

Strains and Plasmids

Wild-type Synechococcus elongatus PCC7942 was used as the background

strain for all genetic manipulation. All strains used in this study are listed in

Table S1. Oligonucleotides used in cloning and segregation analysis are listed

in Table S2. Additional details about the generation of strains can be found in

Extended Experimental Procedures. Standard molecular biology procedures

were used for the construction of plasmids. In brief, a BglBrick strategy (Ander-

sonetal., 2010)wasused for the fusionofgenes,fluorescent tags, andpromoters

and for the introduction of gene constructs into transformation vectors for inte-

gration into the chromosome specific loci, neutral site I and II, as described in

Extended Experimental Procedures. Genetic deletions were generated via

homologous recombination as previously described (Clerico et al., 2007).

Growth and Physiology

Strains were grown in BG11 (Allen, 1968) media in a Sanyo Environmental

Chamber with an atmosphere containing air or 3% CO2 and a light intensity

of 100 mmol photons m�2 s�1. Chlorophyll fluorescence kinetics were mea-

sured on an AquaPen-C fluorometer (Photon Systems Instruments, Brno,

Czech Republic) using cells diluted to a Chl-a concentration of �1–2 mg/ml

and dark-adapted for 3 min.

Protein Extraction and Western Blotting

Cells harvested following induction with 200 mM IPTGwere ruptured with glass

beads. Soluble and pelletable fractions were collected from cell-free lysates

following centrifugation as described in Extended Experimental Procedures.

Proteins were separated by SDS-PAGE, transferred to nitrocellulose mem-

branes, probedwith rabbit a-RbcL (1:5,000; Agrisera) followed bygoat a-rabbit

IgG (1:7,500; Promega), and developed with SIGMAFAST BCIP/NBT (Sigma).

Microscopy

Fluorescencemicroscopy was performed on a Zeiss LSM 710 confocal micro-

scope with a 63x/1.4 NA oil-immersion objective using cells plated on 1%

agarose as described in Extended Experimental Procedures. Images were

analyzed with ImageJ (Abramoff et al., 2004). For transmission electron micro-

scopy, cells fixed with 2% glutaraldehyde were stained and embedded as

described in Extended Experimental Procedures and imaged with a JEOL

1200 EX TEM (80 kV) or a FEI Technai 12 TEM (120 kV).

SUPPLEMENTAL INFORMATION

Supplemental Information includes Extended Experimental Procedures, six

figures, two tables, and two movies and can be found with this article online

at http://dx.doi.org/10.1016/j.cell.2013.10.044.
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