152 research outputs found

    Fabrication, Ordering and Optical Properties of Photonic Crystals Prepared From Crystalline Colloidal Arrays

    Get PDF
    We developed novel understandings pertaining to the ordering and optical properties of crystalline colloidal array (CCA) materials and applied these understandings to develop novel non-close-packed inverted photonic crystal materials. CCA materials are highly charged electrostatically stabilized colloidal particles in water which readily form face centered cubic or body centered cubic lattice structures. Because their periodicity is on the order of the wavelength of light, CCA materials have the ability to Bragg diffract light in the UV, visible and NIR regions of the electromagnetic spectrum. We utilized time resolved normal incidence reflection spectroscopy to probe the degree and kinetics of CCA ordering during the CCA crystallization process. Bragg diffraction interference fringe intensity is used to qualitatively determine the overall CCA ordering between CCA samples which have incremental additions of added ionic impurity.We defined the physical mechanism for anomalous reflection peaks obtained in the specular reflection direction from photonic crystal materials. We utilize variable angle specular reflection spectroscopy to probe angular ranges about the normal to the (111) planes of an fcc CCA to monitor the dispersion of anomalous reflection peaks. We correlated these reflection peaks to the diffraction from higher order Miller index crystal planes through Bragg's Law. We explain the origin of these peaks as the result of a multiple diffraction process whereby light is first Bragg diffracted into a beam from a set of higher order Miller index planes and consecutively diffracted by the in plane (111) periodicity into the (111) specular reflection direction. We also uncovered a novel use for CCA and PCCA materials allowing us to fabricate a non-close-packed inverted photonic crystal material. Our novel fabrication method consists of an infiltration and condensation of a sol-gel precursor into the hydrogel matrix of a PCCA and then the subsequent removal of the PCCA material. We show that the original high ordering of the CCA is maintained through and in-depth study which examining the (111) in-plane ordering. Tuning the CCA particle number density, prior to the fabrication process provides the ability to readily tune the Bragg diffracted wavelength of the final inverted photonic crystal

    Benefits and barriers of construction project monitoring using hi-resolution automated cameras

    Get PDF
    A more rapid and widespread use and implementation of technology in construction often fails since its benefits and limitations remain somewhat unclear. Project control is one of the most variable and time consuming task of construction project managers and superintendents, and yet continues to be mostly a manual task. Controlling tasks such as tracking and updating project schedules can be assisted through remotely operating technology such as hi-resolution cameras that can provide construction management and other users with imaging feeds of job site activities. Although construction cameras have been around for many years the costs, benefits, and barriers of their use have not been investigated nor quantified in detail. Subsequently, definitions and understanding vary widely, making it difficult for decision makers at the organizational level to decide on the investment in camera technology. This thesis reviews the status of hi-resolution cameras and their present use in construction. Results of a multi-phased survey to industry professionals were collected in order to identify benefits and barriers and develop a cost-benefit model that can be used for implementation technology in construction.M.S.Committee Chair: Jochen Teizer; Committee Member: Ioannis Brilakis; Committee Member: Michael Meye

    Hydroschorlomite in altered basalts from Hole 1256D, ODP Leg 206: The transition from low-temperature to hydrothermal alteration

    No full text
    International audienceHydroschorlomite, a Ti-, Ca-, Fe-rich andraditic arnet present in the deepest cores of basalts (661?749 bsf) drilled in Hole 1256D during Ocean Drilling Program (ODP) Leg 206 (equatorial east Pacific), is reported here for the first time in oceanic crust. Detailed petrological and mineralogical studies by optical microscope, electron microprobe, scanning and transmission electron microscope, and micro-Raman spectroscopy are used to characterize this hydrogarnet and its relationships with other minerals. Hydroschorlomite occurs in Hole 1256D as small (5?50 ?m) anhedral or euhedral crystals associated either with celadonite in black halos adjacent to celadonite veins or with brown saponitic phyllosilicate in brown alteration halos adjacent to veins of saponite and iron oxyhydroxides. Both types of halos are formed at low temperature (less than about 100?C). Textural observations suggest that hydroschorlomite formation is contemporaneous with the phyllosilicates. Hydroschorlomite is rich in CaO (22.5?26.5 wt%), TiO2 (22.0?28.6 wt%), and FeOt (6.2?12.9 wt%) and contains significant F (up to 0.85 wt%) and Zr2O3 (up to 0.34 wt%). The presence of OH suggested by the low total percentages of oxides (95.2?97.3 wt%) is confirmed by the OH vibration at 3557 cm?1 in the micro-Raman spectrum. Chemical mapping indicates that hydroschorlomite is not zoned and is always associated with either celadonitic or saponitic phyllosilicates. Some hydroschorlomite crystals partly include tiny (<10 ?m) skeletal titanomagnetite. The occurrence of hydroschorlomite in Hole 1256D basalts coincides with a general downward increase in temperatures and overall intensity of alteration manifest by the alteration of plagioclase and the occurrence of small amounts of mixed-layer chlorite-smectite. The titanium necessary to form hydroschorlomite is provided by the breakdown of primary tiny (<10 ?m) titanomagnetite, while calcium is provided by the replacement of plagioclase by albite. Hydroschorlomite is thus an indicator of alteration of titanomagnetite under conditions transitional from low-temperature alteration to hydrothermal metamorphism with formation of titanite and may affect magnetic properties of the rocks

    Investigation of the role of βarrestin2 in kappa opioid receptor modulation in a mouse model of pruritus

    Get PDF
    The kappa opioid receptor (KOR) is involved in mediating pruritus; agonists targeting this receptor have been used to treat chronic intractable itch. Conversely, antagonists induce an inch response at the site of injection. As a G protein-coupled receptor (GPCR), the KOR has potential for signaling via G proteins and βarrestins, however, it is not clear which of these pathways are involved in the KOR modulation of itch. In this study asked whether the actions of KOR in pruritus involve βarrestins by using βarrestin2 knockout (βarr2-KO) mice as well as a recently described biased KOR agonist that biases receptor signaling toward G protein pathways over βarrestin2 recruitment. We find that the KOR antagonists nor-binaltorphimine (NorBNI) and 5′-guanidinonaltrindole (5′GNTI) induce acute pruritus in C57BL/6J mice, with reduced effects in KOR-KO mice. βarr2-KO mice display less of a response to KOR antagonist-induced itch compared to wild types, however no genotype differences are observed from chloroquine phosphate (CP)-induced itch, suggesting that the antagonists may utilize a KOR-βarrestin2 dependent mechanism. The KOR agonist U50,488H was equally effective in both WT and βarr2-KO mice in suppressing CP-induced itch. Furthermore, the G protein biased agonist, Isoquinolinone 2.1 was as effective as U50,488H in suppressing the itch response induced by KOR antagonist NorBNI or CP in C57BL/6J mice. Together these data suggest that the antipruritic effects of KOR agonists may not require βarrestins

    A Resampling Approach For causal Inference On Novel Two-Point Time-Series With Application To Identify Risk Factors For Type-2 Diabetes And Cardiovascular Disease

    Full text link
    Two-point time-series data, characterized by baseline and follow-up observations, are frequently encountered in health research. We study a novel two-point time series structure without a control group, which is driven by an observational routine clinical dataset collected to monitor key risk markers of type-22 diabetes (T2D) and cardiovascular disease (CVD). We propose a resampling approach called 'I-Rand' for independently sampling one of the two time points for each individual and making inference on the estimated causal effects based on matching methods. The proposed method is illustrated with data from a service-based dietary intervention to promote a low-carbohydrate diet (LCD), designed to impact risk of T2D and CVD. Baseline data contain a pre-intervention health record of study participants, and health data after LCD intervention are recorded at the follow-up visit, providing a two-point time-series pattern without a parallel control group. Using this approach we find that obesity is a significant risk factor of T2D and CVD, and an LCD approach can significantly mitigate the risks of T2D and CVD. We provide code that implements our method

    "Global Risk Sharing: Toward a stronger Financial System"(in Japanese)

    Get PDF
    Recent surge of large real estate lending in Japan suggests the creation of a new series of lumpy credit risk exposures entering Japanese bank portfolios. It is necessary to transform these types of large, concentrated exposures into more manageable pieces of risk. The development of syndication and securitization markets provide an antidote to this creeping risk of crisis as concentrations deepen. Without the mechanisms for distributing and managing risk, Japan will forever lag the rest of the developed world in terms of financial market development and financial market competitiveness. Even worse, the days of liquidity crunches and a contracting economy may return if the structure of the market is not modified to better manage concentration risk.

    Global Risk Sharing: Toward a stronger Financial System

    Get PDF
    Recent surge of large real estate lending in Japan suggests the creation of a new series of lumpy credit risk exposures entering Japanese bank portfolios. It is necessary to transform these types of large, concentrated exposures into more manageable pieces of risk. The development of syndication and securitization markets provide an antidote to this creeping risk of crisis as concentrations deepen. Without the mechanisms for distributing and managing risk, Japan will forever lag the rest of the developed world in terms of financial market development and financial market competitiveness. Even worse, the days of liquidity crunches and a contracting economy may return if the structure of the market is not modified to better manage concentration risk.

    Characterization of kappa opioid receptor mediated, dynorphin-stimulated [35S]GTPγS binding in mouse striatum for the evaluation of selective KOR ligands in an endogenous setting

    Get PDF
    Differential modulation of kappa opioid receptor (KOR) signaling has been a proposed strategy for developing therapies for drug addiction and depression by either activating or blocking this receptor. Hence, there have been significant efforts to generate ligands with diverse pharmacological properties including partial agonists, antagonists, allosteric modulators as well as ligands that selectively activate some pathways while not engaging others (biased agonists). It is becoming increasingly evident that G protein coupled receptor signaling events are context dependent and that what may occur in cell based assays may not be fully indicative of signaling events that occur in the naturally occurring environment. As new ligands are developed, it is important to assess their signaling capacity in relevant endogenous systems in comparison to the performance of endogenous agonists. Since KOR is considered the cognate receptor for dynorphin peptides we have evaluated the selectivity profiles of dynorphin peptides in wild-type (WT), KOR knockout (KOR-KO), and mu opioid receptor knockout (MOR-KO) mice using [35S]GTPγS binding assay in striatal membrane preparations. We find that while the small molecule KOR agonist U69,593, is very selective for KOR, dynorphin peptides promiscuously stimulate G protein signaling in striatum. Furthermore, our studies demonstrate that norBNI and 5′GNTI are highly nonselective antagonists as they maintain full potency and efficacy against dynorphin signaling in the absence of KOR. Characterization of a new KOR antagonist, which may be more selective than NorBNI and 5′GNTI, is presented using this approach

    Structure–Activity Relationship Studies of Functionally Selective Kappa Opioid Receptor Agonists that Modulate ERK 1/2 Phosphorylation While Preserving G Protein Over βArrestin2 Signaling Bias

    Get PDF
    Kappa opioid receptor (KOR) modulation is a promising target for drug discovery efforts due to KOR involvement in pain, depression, and addiction behaviors. We recently reported a new class of triazole KOR agonists that displays significant bias toward G protein signaling over βarrestin2 recruitment; interestingly, these compounds also induce less activation of ERK1/2 map kinases than the balanced agonist, U69,593. We have identified structure–activity relationships around the triazole scaffold that allows for decreasing the bias for G protein signaling over ERK1/2 activation while maintaining the bias for G protein signaling over βarrestin2 recruitment. The development of novel compounds, with different downstream signaling outcomes, independent of G protein/βarrestin2 bias, provides a more diverse pharmacological toolset for use in defining complex KOR signaling and elucidating the significance of KOR-mediated signaling
    corecore