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Abstract

Kappa opioid receptor (KOR) modulation is a promising target for drug discovery efforts due to 

KOR involvement in pain, depression, and addiction behaviors. We recently reported a new class 

of triazole KOR agonists that displays significant bias toward G protein signaling over βarrestin2 

recruitment; interestingly, these compounds also induce less activation of ERK1/2 map kinases 

than the balanced agonist, U69,593. We have identified structure–activity relationships around the 

triazole scaffold that allows for decreasing the bias for G protein signaling over ERK1/2 activation 

while maintaining the bias for G protein signaling over βarrestin2 recruitment. The development of 

novel compounds, with different downstream signaling outcomes, independent of G protein/

βarrestin2 bias, provides a more diverse pharmacological toolset for use in defining complex KOR 

signaling and elucidating the significance of KOR-mediated signaling.
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Kappa opioid receptor (KOR) signaling is involved in numerous biological processes. KOR 

agonists produce antinociception without the physical dependence and respiratory failure 

associated with mu opioid receptor-directed pain therapies.1–4 Additionally, KOR plays a 

role in dopaminergic and serotonergic pathways in the CNS wherein KOR activation can 

decrease dopamine levels. When concomitantly administered with drugs of abuse, such as 

cocaine, KOR agonists can decrease the reinforcing and rewarding effects.5–9 When 

administered prior to a stress-inducing event, KOR antagonists can prevent the decrease in 

dopamine that triggers relapse in drug extinction paradigms.10,11 KOR antagonists have 

been shown to have antidepressant and anxiolytic effects.12–14 These observed behavioral 

effects suggest KOR modulation is a promising therapeutic target for the treatment of pain, 

drug addiction, and depression. Additionally, a partial KOR agonist is currently used 

clinically in the treatment of intractable itch.15–18 However, aversive side effects such as 

dysphoria, sedation, dissociation, diuresis, and depression all limit the therapeutic potential 

of KOR agonism.2,3,10,19–22

Currently it is hypothesized that the antinociception associated with KOR agonism results 

from G protein mediated signaling events while certain negative side effects may result from 

βarrestin2-mediated signaling events.23 Thus, developing KOR agonists that are biased 

toward G protein coupling and away from βarrestin2 recruitment will serve as important 

tools for delineating the contributions of each pathway to the physiological effects of KOR 

activation.24–28 Recently, we reported on a number of selective KOR agonists of a triazole 

scaffold that display functional selectivity, or “bias”, toward G protein signaling over 

βarrestin2 recruitment.29,30

In addition to looking at G protein signaling and βarrestin2 recruitment, ERK1/2 signaling 

was investigated as ERK activation can occur via G protein-dependent or βarrestin2-

dependent signaling pathways.31–35 In the initial series of five triazoles, we noted that, in 

each case, the profiles for activating ERK1/2 paralleled their profiles for activating 
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βarrestin2 recruitment to KOR. In other words, all of the previously reported triazoles have 

low potency for activating ERK1/2 although they maintain potency and efficacy in 

mediating G protein signaling.29 This is very different from 6′GNTI, a previously described 

G protein/βarrestin2 biased agonist, as 6′GNTI promotes potent ERK1/2 activation in the 

cell lines that parallels its ability to activate G protein signaling. These observations 

demonstrate that while two agonists may display bias for G protein signaling over βarrestin2 

recruitment, the observed bias is not necessarily predictive of how the agonist will induce 

downstream signaling to MAP kinases. Herein we evaluate the triazole structure–activity 

relationship and show that the bias for ERK activation can be altered while preserving 

βarrestin2 bias with respect to G protein signaling.

RESULTS AND DISCUSSION

The compounds examined in this study were selected based on trends observed in initial 

screening of compounds developed in iterative rounds of chemistry around the triazole 

scaffold initially described by Zhou et al. (Figure 1).29 In these three examples, we 

investigate the contribution of the three substitutions, namely, the furan, thiophene, or 

pyridine groups, for their impact on proximal G protein signaling and βarrestin2 recruitment 

as well as upon the downstream activation of ERK1/2. In all studies, test compounds are 

assayed in parallel with the KOR agonist, U69,593, which serves as the reference agonist in 

each of the assays.

G protein signaling studies were performed in membranes from CHO-K1 cells stably 

expressing human KOR (CHO-hKOR) as previously described25,29 (Figure 2A, Table 1). All 

of the triazole compounds display similar potencies to U69,593 ranging from 27 to 149 nM 

and act as full agonists. In each series, the furan and thiophene analogues (X.1 and X.2, 

respectively) have similar potencies while the pyridine analogue (X.3) results in a slight but 

statistically significant decrease in potency relative to either furanyl or thiophenyl 

substitution.

To investigate whether these compounds are biased against βarrestin2 recruitment, they were 

evaluated for their ability to stimulate βarrestin2 recruitment using automated high content 

imaging in U2OS cells stably expressing human KOR and GFP-tagged βarrestin2 (U2OS-

hKOR-βarr2-GFP) as previously described.29 All of the test compounds are weakly potent 

(>2 μM EC50) in the βarrestin2 recruitment assay, a log order difference in potency 

compared to the reference compound, U69,593 (194.2 ± 15.6 nM) (Figure 2B, Table 1). 

Interestingly, the response does not reach a plateau at the highest concentrations tested for 

the triazoles, which was also the case for those initially described.29 Since nonlinear 

regression analysis cannot stringently predict a maximal effect when a plateau is not 

reached, relative efficacy values are also presented as a percent of 10 μM U69,593 

stimulation at 10 μM to facilitate comparisons (Table 1).

ERK1/2 activation was assessed using a multiwell plate immunocytochemistry approach 

with the CHO-hKOR cell line as previously described.25,29 While none of the analogues are 

as potent as U69,593 (7.2 ± 0.9 nM) (Figure 2C, Table 1), an interesting structure–activity 

relationship begins to emerge within each group of the triazole compounds. Specifically, the 
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analogues demonstrate a rank order of potency with substitutions on 4-N of the triazole ring: 

thiophenyl (X.2) < furanyl (X.1) < pyridinyl (X.3). As with the previously reported 

triazoles,29 each new triazole analogue tends to produce a greater maximal stimulation of 

ERK1/2 compared to U69,593.

In order to compare the activity of these agonists across multiple signaling platforms, it is 

necessary to address the system-dependent properties of each response. These can include 

differences in receptor number and response amplification as well as other properties that are 

specific to each system. Therefore, we present several different forms of analysis to provide 

evidence that the SAR trend we observe is the result of a change in the system independent 

effects of the ligands. In one effort to contrast the changes in ERK phosphorylation by the 

pyridine analogues (X.3) with the effect of these analogues in βarresin2 recruitment, the 

percent maximum stimulation at each concentration for [35S]GTPγS binding (abscissa) was 

graphed versus the percent maximum stimulation at each concentration for βarrestin2 

recruitment (ordinate, left) and ERK 1/2 phosphorylation (ordinate, right) (Figure 3). This 

equimolar graph was originally proposed by Gregory et al.36 In this representation, a 

compound that produces an equivalently efficacious response in each assay at each dose 

tested, a linear correlation would be derived (shown in the pink curve for reference). One 

can readily see that the modifications at the 4-N position of the triazole ring has little effect 

on modulating βarrestin2 recruitment relative to G protein signaling (all the curves overlap 

and are rightward of U69,593). When ERK and G protein signaling are compared, the 

pyridinyl group substitution (X.3) leads to an ERK activation profile that becomes closer to 

that obtained with U69,593.

In a second effort to quantitatively assess and compare the potencies in each signaling assay, 

the relative activity of each test agonist was estimated using the method described by Griffin 

et al.37 This method incorporates both the potency and maximum response of each test 

agonist to produce a single value of relative activity that can be compared between responses 

relative to the performance of a full agonist, the reference agonist (here U69,593) in each 

system; Figure 4A presents the comparison of the relative activity of each test agonist. While 

this manner of analysis helps to visualize the empirical relationship of the responses 

produced by each test agonist, the analysis does not consider inherent differences between 

the assay systems that are compared.38 Therefore, to gain a more quantitative comparison 

between compounds, the data in Figure 2 were fit to the operational model to produce 

estimates of the relative intrinsic activity of each test agonist in each measure of response 

(Table 2).29,38,39 The derived values, comparing G protein coupling versus βarrestin2 

recruitment or ERK1/2 activation, are plotted as “bias factors” in Figure 4B and as ΔΔLogR 

values including standard error of the mean calculations in Table 2.

For both the G protein coupling and βarrestin2 recruitment data, the fit of the model 

provided straightforward parameter estimates for each agonist (ΔLogR; Table 2). When 

considering the preference for G protein signaling over βarrestin2 recruitment 

(ΔΔLogRG−βarr2), substitutions at the 4-N position on the triazole ring have no conserved 

effect of either increasing or decreasing the degree of bias seen when comparing compound 

performance in these assays. However, comparison of the X.1, X.2, and X.3 substitutions at 

this position produce a conserved change in bias factors when comparing G protein 
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signaling and ERK1/2 activation (ΔΔLogRG−ERK, Figure 4B, Table 2). For each scaffold, the 

thiophene (X.2) substitution produces a greater bias factor for G protein signaling over 

ERK1/2 activation while the pyridine (X.3) substitution produces a smaller bias factor when 

compared to the furan (X.1) substitution. In Table 2, standard error of the mean values and 

95% confidence intervals are presented to suggest that these differences may prove to be 

statistically significant; however, the rigor of statistics for propagating error of comparison 

over multiple populations has not been applied.

The results of all of these forms of analysis lead us to conclude that the incorporation of a 

basic nitrogen atom in one of the heterocycles attached to the triazole does not lead to a 

universal trend for altering bias toward G protein coupling compared to βarrestin2 

recruitment. However, a conserved trend becomes apparent when comparing G protein bias 

over activating ERK1/2. To facilitate further comparisons, the ratio of bias factors obtained 

for each comparison were calculated from 10^(ΔΔLogRG−βarr2)/10^(ΔΔLogRG−ERK); the 

bias factor ratios are plotted as a summary schematic in Figure 5. Importantly, these findings 

demonstrate that biasing G protein signaling versus βarrestin2 recruitment or ERK 1/2 

phosphorylation has the potential to be independent of one another.

In summary, through structural modification of the 4-N substituent of the triazole scaffold 

we were able identify three series of compounds with conserved substitutions that have little 

effects on altering the bias between G protein signaling and βarrestin2 recruitment, but 

produce pronounced and conserved variations in bias between G protein signaling and 

ERK1/2 activation. If only considered for the G protein bias over βarrestin2 recruitment 

profiles, little difference would be evident among the nine compounds. By revealing the 

differences in the degrees of bias against ERK1/2 activation, these compounds will serve as 

important probes for evaluating how the different aspects of biased signaling will be 

reflected in other pharmacological as well as physiological effects at KOR. What remains is 

the question of how these compounds, which clearly differ in the cell-based assays, will 

perform in the endogenous setting. Since bias is highly context dependent (the receptor can 

only interact with intracellular components that are expressed where the receptor is 

expressed for example), further studies with these compounds will be necessary in an 

endogenous setting. Therefore, these studies inform only as to the differences between how 

the compounds can perform under the conditions analyzed and in comparison to the 

performance of a reference agonist, U69,593. Studies in endogenous tissues and in vivo will 

help to understand how bias profiles in cell based assays can be predictive (or not) of 

signaling induced at the multiple and diverse expression locations of the KOR in vivo.

METHODS

Compounds and Reagents for Biological Studies

Control (+)-(5α,7α,8β)-N-methyl-N-(7-(1-pyrrolidinyl)-1-oxaspiro(4.5)dec-8-yl)-

benzeneacetamide (U69,593) was purchased from Sigma-Aldrich. U69,593 was prepared in 

ethanol as a 10 mM stock, and test compounds were prepared as 10 mM stocks in DMSO 

(Fisher). All compounds were then diluted further in DMSO and then to working 

concentrations in vehicle for each assay without exceeding 1% DMSO or ethanol 

concentrations. [35S]GTPγS was purchased from PerkinElmer Life Sciences (Waltham, 
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MA). Phospho-ERK1/2 and total ERK1/2 antibodies were purchased from Cell Signaling 

(Beverly, MA) and Li-Cor secondary antibodies (antirabbit IRDye800CW and antimouse 

IRDye680LT) were purchased from Li-Cor Biosciences (Lincoln, NE).

Cell Lines and Cell Culture

Previously described Chinese hamster ovary (CHO) cells virally transfected to express HA-

tagged recombinant human kappa opioid receptors (CHO-hKOR) were maintained in 

DMEM/F-12 media (Invitrogen) supplemented with 10% fetal bovine serum, 1% penicillin/

streptomycin, and 500 μg/mL Geneticin.25,29 A stable U2OS cell line expressing hKOR and 

βarrrestin2-eGFP (U2OS-hKOR-βarrestin2-GFP) was a gift from Dr. Lawrence Barak, Duke 

University. These cells were maintained in minimum Eagle’s medium with 10% fetal bovine 

serum, 1% penicillin/streptomycin, 500 μg/mL Geneticin, and 50 μg/mL zeocin. All cells 

were grown at 37 °C (5% CO2 and 95% relative humidity).

[35S]GTPγS Coupling

[35S]GTPγS Coupling was performed following a previously published protocol.25,29 

Briefly, cells were serum-starved for 1 h, collected in 5 mM EDTA, and stored at −80 °C 

until needed. Membranes were prepared in membrane preparation buffer (10 mM Tris-HCl, 

pH 7.4, 100 mM NaCl, 1 mM EDTA). Each reaction was performed at room temperature for 

1 h and contained 15 μg of membrane protein, ~0.1 nM [35S]GTPγS, and increasing 

concentrations of test compound to yield a total volume of 200 μL in assay buffer (50 mM 

Tris-HCl, pH 7.4, 100 mM NaCl, 5 mM MgCl2, 1 mM EDTA, and 3 μM GDP). Reactions 

were quenched using a 96-well plate harvester (Brandel Inc., Gaithersburg, MD) and filtered 

through GF/B filters (PerkinElmer Life Sciences). Filters were dried and imaged with a 

TopCount NXT high throughput screening microplate scintillation and luminescence counter 

(PerkinElmer Life Sciences).

βArrestin2 Imaging

βArrestin2 imaging was performed following a previously published protocol.29 In short, 

U2OS-hKOR-βarr2-GFP cells were plated at a cell density of 5000 cells per well and 

incubated at 37 °C overnight. After a 30 min serum starve, cells were treated with increasing 

drug concentration for 20 min at 37 °C and fixed with prewarmed 4% paraformaldehyde and 

stained with Hoechst stain (1:000) for 30 min. Images were acquired with a ×20 objective on 

the CellInsight High Content Screening Platform (Thermo Scientific) and the number of 

spots per cell was determined using the Cellomics Spot Detector BioApplication algorithm 

(version 6.0).

In-Cell Western ERK1/2 Phosphorylation

Assay was performed following previously published protocols.25,29 Briefly, hKOR-CHO 

cells were plated in 384-well plate at 15 000 cells per well and incubated at 37 °C overnight. 

After a 1 h serum starve and 10 min drug treatment, cells were fixed, permeabilized, 

blocked, and stained with primary antibodies for phosphorylated ERK1/2 and total-ERK1/2 

(1:300 and 1:400, respectively) at 4 °C overnight. Cells were imaged with Li-Cor secondary 
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antibodies (antirabbit IRDye800CW, 1:500; anti-mouse IRDye680LT, 1:1500) using an 

Odyssey Infrared Imager (Li-Cor Biosciences, Lincoln, NE) at 700 and 800 nm.

Data Analysis and Statistics

Concentration response curves were generated using three-parameter nonlinear regression 

analysis on GraphPad Prism 6.01 software (GraphPad, La Jolla, CA). In each experiment, 

compound concentrations were run in parallel between 2 and 4 replicates in each individual 

experiment and n ≥ 3 for independent experiments was performed. In each individual 

experiment, compounds were normalized to the maximal U69,593 stimulation and the 

nonlinear regression analysis performed on each individual curve were averaged to yield 

efficacy and potency values reported as the mean ± SEM.

In order to determine the bias of the test ligands, each data set was fit to the operational 

model.37,38 This form of bias analysis employs a reference ligand that is assumed to be a full 

neutral agonist (i.e., the reference agonist activates all response pathways equally and does 

not exhibit a preference for one pathway over another). In the experiments presented here, 

U69,593 was used as the reference agonist and the U69,593 concentration curves were fit to 

the equation, from Griffin et al.,37 in each set of experiments:

(1)

In this equation, top represents the maximum response of the system, bottom represents the 

basal level of stimulation in the system, n represents the transducer slope, LogX represents 

the log of the concentration of U69,593 used (expressed in molar units), and LogKreference 

represents the log of the affinity constant of U69,593. When this equation is applied to the 

concentration–response curve, a value for the LogRreference parameter is produced. 

LogRreference is a single composite parameter that represents the product of the intrinsic 

agonist activity of the reference agonist (otherwise known as the τreference of the reference 

compound) and the affinity constant of the reference agonist (LogKreference).

By combining τreference and LogKreference into a single parameter in the equation, it is 

possible to achieve a highly accurate estimate of the LogRreference. It is not possible to 

directly estimate either τreference or LogKreference individually. Similarly, each test compound 

was fit to the equation, from Griffin et al., in each set of experiments:

(2)

This equation shares many parameter definitions with eq 1. Specifically, top, bottom, n, and 

LogR are all identical to the parameters defined for eq 1. Similarly, LogKtest represents the 

log of the affinity constant of the test agonist and LogX represents the log of the 

concentration of the test agonist used (in molar units). When the test agonist is fit with eq 2 

and the reference agonist is simultaneously fit with eq 1, the value of LogRreference is held 

constant for the two equations. The parameter ΔLogR is defined as the difference between 

the LogRtest of the test agonist and the LogRreference (ΔLogR = LogRTest − LogRreference). 
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Since the LogRreference is held constant between the two equations, the ΔLogR of each test 

agonist can be directly determined in each experiment. In order to determine the bias of a 

test ligand for different signaling cascades, the ΔLogR of each test agonist in multiple 

experiments was averaged and the difference in this averaged ΔLogR for each test agonist, in 

each response was calculated as

(3)

This difference in the ΔLogR of the test agonist for the two measures of response, defined as 

ΔΔLogR, provides a measure of the bias of the test agonist between the two responses. 

Specifically, the bias factor of each test agonist is defined as the antilog of the ΔΔLogR.38 

The 95% confidence interval of the test agonists’ ΔΔLogR values (Table 2) support the 

preliminary finding that each test agonist is biased for G protein coupling over the other 

pathways under investigation.

Several parameters were constrained in this analysis in order to achieve accurate measures of 

each test agonist’s ΔLogR. As stated above, the LogRreference of the reference agonist was 

held constant when applied to both the test agonist and the reference agonist. Additionally 

the parameter n, the transducer slope, was also constrained to be shared for all agonists in 

each experiment. Similarly, the Bottom and Top parameters were shared for all agonists 

because the basal and maximal response of the system can be assumed to be the same for all 

agoinsts. The affinity constant of the test agonist, LogKtest, was constrained to the range of 

1fM to 1 M, and the ΔLogR was constrained so that the absolute value of the ΔLogR of the 

test agonist was less than 10. The constraints were applied to the LogKtest and ΔLogR we 

chose in order to allow the fitted values for these parameters to be interpreted as meaningful 

and useful.

Compounds and Reagents for Chemical Synthesis

Except as noted below, reagents and materials were purchased from commercial vendors 

(Sigma, Alfa Aesar, TCI America, Fisher Scientific) and used as received. Ethyl ether, 

toluene, THF, MeCN, and CH2Cl2 were degassed with nitrogen and passed through two 

columns of basic alumina on an Innovative Technology solvent purification system. 1H 

and 13C NMR spectra were recorded on a Bruker AM 400 spectrometer (operating at 400 

and 100 MHz respectively) in CDCl3 with 0.03% TMS as an internal standard, unless 

otherwise specified. Chemical shifts are reported in parts per million (ppm) downfield from 

TMS. 13C Multiplicities were determined with the aid of an APT pulse sequence, 

differentiating the signals for methyl and methine carbons as “d” from methylene and 

quaternary carbons as “u”. The infrared (IR) spectra were acquired as thin films using a 

universal ATR sampling accessory on a PerkinElmer Spectrum 100 FT-IR spectrometer and 

the absorption frequencies are reported in cm−1. Melting points were determined on a 

Stanford Research Systems Optimelt automated melting point system interfaced through a 

PC and are uncorrected.

HPLC/MS analysis was carried out with gradient elution (5% CH3CN to 100% CH3CN) on 

an Agilent 1200 HPLC with a photodiode array UV detector and an Agilent 6224 TOF mass 

spectrometer (also used to produce high resolution mass spectra). One of two column/mobile 
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phase conditions were chosen to promote the target’s neutral state (0.02% formic acid with 

Waters Atlantis T3 5um, 19 × 150 mm; or pH 9.8 NH4OH with Waters XBridge C18 5 um, 

19 × 150 mm).

The furan- and thiophene-containing thione substrates were synthesized as previously 

described.30 The synthesis of the 3-pyridine-containing thione substrate as well as HPLC 

chromatograms and images of the NMR spectra are provided in the Supporting Information.

General Procedure for the Synthesis of Triazole Analogues

The previously reported protocol was utilized for the synthesis of novel triazole analogues.30 

Thus, the thione scaffold (0.1–0.3 mmol), K2CO3 (2 equiv), and the benzyl halide (1.2 

equiv) were combined in acetone (15 mL/mmol substrate) and stirred at rt in a sealed vial. 

After 15 h, the solvent was removed and the residue washed with CH2Cl2 (2 × 3 mL) and 

filtered. The combined filtrates were evaporated and purified by silica gel chromatography to 

afford the triazole thioether product.

1.1. 2-(5-((2-Chloro-5-(trifluoromethyl)benzyl)thio)-4-(furan-2-yl-
methyl)-4H-1,2,4-triazol-3-yl)pyridine—The furan-containing thione (52 mg, 0.20 

mmol) and 2-chloro-5-(trifluoromethyl)benzyl bromide (66 mg, 0.24 mmol, 1.2 equiv) were 

reacted according to the general procedure to afford the product as a white solid (74 mg, 

0.17 mmol, 83% yield). Mp = 109–114 °C; Rf = 0.51 (1:1 hexanes/EtOAc). 1H NMR 

(CDCl3) δ 4.65 (s, 2H), 5.81 (s, 2H), 6.12 (d, J = 2.8 Hz, 1H), 6.19 (dd, J = 2.0, 3.2 Hz, 1H), 

7.23 (d, J = 1.2 Hz, 1H), 7.34 (ddd, J = 1.2, 4.8, 7.6 Hz, 1H), 7.46–7.52 (m, 2H), 7.74 (d, J = 

0.8 Hz, 1H), 7.81 (dt, J = 1.6, 8.0 Hz, 1H), 8.27 (d, J = 8.0 Hz, 1H), 8.64 (d, J = 4.8 Hz, 

1H). 13C NMR (CDCl3, APT pulse sequence) δ d 109.0, 110.4, 123.4, 124.1, 125.9 (q, J = 

3.6 Hz), 128.1 (q, J = 3.7 Hz), 130.2, 137.0, 142.7, 148.5; u 35.4, 41.9, 123.4 (d, J = 273.3 

Hz), 129.5 (q, J = 33.2 Hz), 135.8, 138.1, 147.7, 148.9, 152.1, 152.8. IR (neat) 1590, 1463, 

1446, 1423 cm−1. HRMS (ESI) m/z calcd for C20H15ClF3N4OS ([M + H]+), 451.0607; 

found, 451.0619. HPLC purity = 99.6%.

1.2. 2-(5-((2-Chloro-5-(trifluoromethyl)benzyl)thio)-4-(thiophen-2-
ylmethyl)-4H-1,2,4-triazol-3-yl)pyridine—The thiophene-containing thione (55 mg, 

0.20 mmol) and 2-chloro-5-(trifluoromethyl)benzyl bromide (66 mg, 0.24 mmol, 1.2 equiv) 

were reacted according to the general procedure to afford the product as a white solid (90 

mg, 0.19 mmol, 96% yield). Mp = 118–121 °C; Rf = 0.58 (1:1 hexanes/EtOAc). 1H NMR 

(CDCl3) δ 4.65 (s, 2H), 5.90 (s, 2H), 6.84 (dd, J = 3.6, 5.2 Hz, 1H), 7.00 (dd, J = 1.2, 3.2 Hz, 

1H), 7.14 (dd, J = 1.2, 5.2 Hz, 1H), 7.35 (ddd, J = 1.2, 4.8, 7.6 Hz, 1H), 7.44–7.51 (m, 2H), 

7.73 (d, J = 2.0 Hz, 1H), 7.82 (dt, J = 1.6, 8.0 Hz, 1H), 8.30 (td, J = 1.2, 8.0 Hz, 1H), 8.66 

(ddd, J = 0.8, 2.0, 4.8 Hz, 1H). 13C NMR (CDCl3, APT pulse sequence) δ d 123.3, 124.2, 

126.0 (q, J = 3.7 Hz), 126.4, 126.5, 127.7, 128.1 (q, J = 3.7 Hz), 130.2, 137.1, 148.5; u 35.4, 

43.7, 123.4 (d, J = 273.5 Hz), 129.3 (q, J = 33.1 Hz), 135.8, 137.7, 138.1, 147.6, 151.8, 

152.6; IR (neat) 1590, 1463, 1445, 1417 cm−1. HRMS (ESI) m/z calcd for C20H15ClF3N4S2 

([M + H]+), 467.0379; found, 467.0375. HPLC purity = 100%.
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1.3. 2-(5-((2-Chloro-5-(trifluoromethyl)benzyl)thio)-4-(pyridin-3-
ylmethyl)-4H-1,2,4-triazol-3-yl)pyridine—The 3-pyridine-containing thione (50 mg, 

0.19 mmol) and 2-chloro-5-(trifluoromethyl)benzyl bromide (61 mg, 0.22 mmol, 1.2 equiv) 

were reacted according to the general procedure to afford the product as an off-white solid 

(64 mg, 0.14 mmol, 75% yield). Mp = 122–123 °C; Rf = 0.54 (EtOAc). 1H NMR (CDCl3) δ 

4.65 (s, 2H), 5.76 (s, 2H), 7.14 (ddd, J = 0.8, 4.8, 7.6 Hz, 1H), 7.32 (ddd, J = 1.2, 4.8, 7.6 

Hz, 1H), 7.40 (td, J = 2.0, 7.6 Hz, 1H), 7.46–7.51 (m, 2H), 7.74 (d, J = 1.6 Hz, 1H), 7.82 (dt, 

J = 2.0, 7.6 Hz, 1H), 8.32 (td, J = 1.2, 8.0 Hz, 1H), 8.47 (dd, J = 1.6, 4.8 Hz, 1H), 8.52 (d, J 
= 1.6 Hz, 1H), 8.56 (qd, J = 0.8, 5.2 Hz, 1H). 13C NMR (CDCl3, APT pulse sequence) δ d 

123.4, 123.5, 124.4, 126.1 (q, J = 3.6 Hz), 128.2 (q, J = 3.7 Hz), 130.3, 135.0, 137.3, 148.7, 

149.3, 149.4; u 35.3, 46.5, 123.5 (d, J = 273.4 Hz), 129.6 (q, J = 33.3 Hz), 131.5, 135.7, 

138.1, 147.5, 152.3, 153.0. IR (neat) 1590, 1465, 1446, 1420, 1328 cm−1. HRMS (ESI) m/z 
calcd for C21H16ClF3N5S ([M + H]+), 462.0767; found, 462.0789. HPLC purity = 98.2%.

2.1. 2-(5-((4-Iodobenzyl)thio)-4-(furan-2-ylmethyl)-4H-1,2,4-triazol-3-yl)pyridine
—The furan-containing thione (52 mg, 0.20 mmol) and 4-iodobenzyl bromide (71 mg, 0.24 

mmol, 1.2 equiv) were reacted according to the general procedure to afford the product as a 

tan solid (25 mg, 0.05 mmol, 27% yield). Mp = 123–126 °C; Rf = 0.31 (1:1 hexanes/

EtOAc). 1H NMR (CDCl3) δ 4.43 (s, 2H), 5.82 (s, 2H), 6.11 (dd, J = 0.4, 3.2 Hz, 1H), 6.21 

(dd, J = 1.6, 3.2 Hz, 1H), 7.16 (d, J = 8.4 Hz, 2H), 7.24 (dd, J = 0.8, 2.0 Hz, 1H), 7.34 (ddd, 

J = 1.2, 4.8, 7.6 Hz, 1H), 7.62 (td, J = 1.6, 8.0 Hz, 2H), 7.81 (dt, J = 1.6, 8.0 Hz, 1H), 8.28 

(d, J = 8.0 Hz, 1H), 8.65 (ddd, J = 0.8, 1.6, 4.8 Hz, 1H). 13C NMR (CDCl3, APT pulse 

sequence) δ d 109.0, 110.5, 123.4, 124.2, 131.1, 137.0, 137.8, 142.7, 148.6; u 37.5, 42.0, 

93.4, 136.6, 147.8, 149.0, 152.6, 152.7; IR (neat) 1589, 1483, 1462, 1445, 1421 cm−1. 

HRMS (ESI) m/z calcd for C19H16IN4OS ([M + H]+), 475.0089; found, 475.0098. HPLC 

purity = 98.3%.

2.2. 2-(5-((4-Iodobenzyl)thio)-4-(thiophen-2-ylmethyl)-4H-1,2,4-triazol-3-
yl)pyridine—The thiopehene-containing thione2 (55 mg, 0.20 mmol) and 4-iodobenzyl 

bromide (71 mg, 0.24 mmol, 1.2 equiv) were reacted according to the general procedure to 

afford the product as a white solid (93 mg, 0.19 mmol, 95% yield). Mp = 125–128 °C; Rf = 

0.34 (1:1 hexanes/EtOAc). 1H NMR (CDCl3) δ 4.42 (s, 2H), 5.91 (s, 2H), 6.85 (dd, J = 3.6, 

5.2 Hz, 1H), 6.96 (dd, J = 1.2, 3.6 Hz, 1H), 7.12–7.16 (m, 3H), 7.34 (ddd, J = 0.8, 5.2, 7.6 

Hz, 1H), 7.61 (td, J = 2.0, 8.4 Hz, 2H), 7.81 (dt, J = 1.6, 8.0 Hz, 1H), 8.30 (d, J = 8.0 Hz, 

1H), 8.67 (d, J = 8.4 Hz, 1H). 13C NMR (CDCl3, APT pulse sequence) δ d 123.3, 124.3, 

126.4, 126.6, 127.7, 131.2, 137.2, 137.8, 148.6; u 37.5, 43.8, 93.5, 136.6, 137.9, 147.8, 

152.4, 152.5. IR (neat) 1588, 1568, 1482, 1462, 1445, 1417 cm−1. HRMS (ESI) m/z calcd 

for C19H16IN4S2 ([M + H]+), 490.9861; found, 490.9866. HPLC purity = 97.9%.

2.3. 2-(5-((4-Iodobenzyl)thio)-4-(pyridin-3-ylmethyl)-4H-1,2,4-tri-azol-3-
yl)pyridine—The 3-pyridine-containing thione (49 mg, 0.18 mmol) and 4-iodobenzyl 

bromide (65 mg, 0.22 mmol, 1.2 equiv) were reacted according to the general procedure to 

afford the product as a colorless oil (72 mg, 0.15 mmol, 82% yield); Rf = 0.34 (EtOAc). 1H 

NMR (CDCl3) δ 4.42 (s, 2H), 5.77 (s, 2H), 7.10 (d, J = 8.8 Hz, 2H), 7.13 (dd, J = 4.8, 7.6 

Hz, 1H), 7.29–7.33 (m, 2H), 7.59 (td, J = 2.0, 8.4 Hz, 2H), 7.81 (dt, J = 2.0, 8.0 Hz, 1H), 
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8.31 (td, J = 0.8, 8.0 Hz, 1H), 8.48 (d, J = 4.0 Hz, 1H), 8.52 (s, 1H), 8.56 (qd, J = 0.8, 4.8 

Hz, 1H). 13C NMR (CDCl3, APT pulse sequence) δ d 123.4, 123.6, 124.4, 131.1, 135.0, 

137.3, 137.9, 148.8, 149.2, 149.3; u 37.3, 46.5, 93.6, 131.7, 136.4, 147.5, 152.7, 152.9; IR 

(neat) 1588, 1482, 1464, 1446, 1419 cm−1; HRMS (ESI) m/z calcd for C20H17IN5S ([M + 

H]+), 486.0249; found, 486.0257. HPLC purity = 98.4%.

3.1. 2-(5-((4-Bromobenzyl)thio)-4-(furan-2-ylmethyl)-4H-1,2,4-tri-azol-3-
yl)pyridine—The furan-containing thione (63 mg, 0.24 mmol) and 4-bromobenzyl bromide 

(73 mg, 0.29 mmol, 1.2 equiv) were reacted according to the general procedure to afford the 

product as a pale yellow solid (59 mg, 0.14 mmol, 57% yield). Mp = 111–115 °C; Rf = 0.31 

(1:1 hexanes/EtOAc). 1H NMR (CDCl3) δ 4.43 (s, 2H), 5.81 (s, 2H), 6.10 (dd, J = 0.8, 3.2 

Hz, 1H), 6.20 (dd, J = 1.6, 3.2 Hz, 1H), 7.23 (dd, J = 0.8, 2.0 Hz, 1H), 7.27 (d, J = 8.4 Hz, 

2H), 7.33 (ddd, J = 1.2, 5.2, 7.6 Hz, 1H), 7.41 (td, J = 2.0, 8.4 Hz, 2H), 7.80 (dt, J = 1.6, 8.0 

Hz, 1H), 8.26 (td, J = 0.8, 8.0 Hz, 1H), 8.63 (ddd, J = 0.8, 1.6, 4.8 Hz, 1H). 13C NMR 

(CDCl3, APT pulse sequence) δ d 109.1, 110.5, 123.5, 124.2, 130.9, 131.9, 137.1, 142.7, 

148.7; u 37.5, 42.0, 121.9, 136.0, 147.8, 149.1, 152.7, 152.8. IR (neat) 1589, 1486, 1462, 

1445, 1421 cm−1. HRMS (ESI) m/z calcd for C19H16BrN4OS ([M + H]+), 427.0228; found, 

427.0211. HPLC purity = 99.8%.

3.2. 2-(5-((4-Bromobenzyl)thio)-4-(thiophen-2-ylmethyl)-4H-1,2,4-triazol-3-
yl)pyridine—The material was prepared as previously described.1 HPLC purity = 100%.

3.3. 2-(5-((4-Bromobenzyl)thio)-4-(pyridin-3-ylmethyl)-4H-1,2,4-triazol-3-
yl)pyridine—The 3-pyridine-containing thione (75 mg, 0.28 mmol) and 4-bromobenzyl 

bromide (84 mg, 0.33 mmol, 1.2 equiv) were reacted according to the general procedure to 

afford the product as a light yellow oil (73 mg, 0.17 mmol, 60% yield). Rf = 0.67 (10% 

MeOH in CH2Cl2). 1H NMR (CDCl3) δ 4.43 (s, 2H), 5.77 (s, 2H), 7.13 (dd, J = 4.8, 7.6 Hz, 

1H), 7.23 (td, J = 2.0, 8.8 Hz, 2H), 7.29–7.33 (m, 2H), 7.39 (td, J = 2.0, 8.4 Hz, 2H), 7.80 

(dt, J = 2.0, 8.0 Hz, 1H), 8.31 (td, J = 0.8, 8.4 Hz, 1H), 8.47 (dd, J = 0.8, 4.8 Hz, 1H), 8.52 

(d, J = 1.2 Hz, 1H), 8.55 (qd, J = 0.8, 4.8 Hz, 1H). 13C NMR (CDCl3, APT pulse sequence) 

δ d 123.4, 123.5, 124.4, 130.9, 131.9, 134.9, 137.2, 148.7, 149.2, 149.3; u 37.2, 46.5, 121.9, 

131.6, 135.8, 147.8, 152.7, 152.8. IR (neat) 1589, 1486, 1464, 1446, 1419 cm−1. HRMS 

(ESI) m/z calcd for C20H17BrN5S ([M + H]+), 438.0388; found, 438.0391. HPLC purity = 

99.8%.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Structures of KOR agonists. Previous identification of triazole compounds with KOR 

agonist activity29,30 has led to the synthesis of compounds analyzed here.
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Figure 2. 
Triazole analogues stimulate G protein coupling, βarrestin2 recruitment, and ERK1/2 

phosphorylation to different degrees relative to U69,593. G protein coupling (A) identifies 

triazole analogues as potent, full agonists in the presence of [35S]GTPγS. High content 

imaging of βarrestin2 (B) illustrates that triazole analogues recruit βarrestin2 only at 

concentrations significantly higher than U69,593. ERK1/2 phosphorylation (C) measured by 

fluorescence intensity detection of the ratio of pERK1/2 to tERK1/2 concludes that triazole 

test compounds exceeds stimulation observed for U69,593. Assays were run with 

concentrations of indicated agonists and are displayed as percentage of maximal U69,593 

stimulation. Calculated potencies and efficacies are presented in Table 1. Data are presented 

as the mean ± SEM (n ≥ 3).
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Figure 3. 
Comparison of G protein signaling to βarrestin2 recruitment and ERK1/2 activation as a 

function of efficacy at each dose tested. Data are presented as the maximal stimulation at 

each agonist concentration normalized to U69,593. These equimolar plots present the 

comparison of each test agonist’s response profile to the stimulation produced by the 

reference agonist, U69,593. For comparison, each graph also presents an equimolar 

relationship of unity, slope equal to one. Each test agonist produces stimulation of G protein 

coupling before measurable βarr2 recruitment is observed. Conversely, the ERK 

phosphorylation produced by the test agonists is ligand dependent and some analogues 

approach both the reference agonist and the unity line.
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Figure 4. 
Bias factors (ΔΔLogR values) and relative activity ratios represented. (A) Relative activity of 

each test agonist (Emax/EC50) is presented relative to the reference agonist U69,593. (B) 

Bias factors were calculated using the operational model and are presented as the degree of 

bias toward G protein coupling and away from βarr2 recruitment and toward G protein 

coupling and away from ERK 1/2 phosphorylation relative to U69,593. The center of each 

figure presents a value equal to one (as defined by the reference agonist). The bias factor of 

the reference agonist is equal to one and the values greater than one indicate bias toward G 

protein coupling compared to βarr2 recruitment or ERK phosphorylation. Values can be 

found summarized in Table 2.
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Figure 5. 
Schematic summarizing the SAR trends revealed when comparing the ratio of Bias Factors 

for each assay. Ratios were generated by dividing the bias factors for G protein vs βarr2 by 

the bias factors for G vs ERK1/2 activation from Table 2. A trend can be seen wherein the 

thiophenyl substitution increases the bias between G protein and ERK activation 

(denominator) resulting in a decrease in the ratio. The pyridyl substitution decreases the bias 

for G protein vs ERK activation (denominator) producing an increase in the ratio.
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