1,082 research outputs found

    Analysis of circadian pattern reveals tissue-specific alternative transcription in leptin signaling pathway

    Get PDF
    *Background*
It has been previously reported that most mammalian genes display a circadian oscillation in their baseline expression. Consequently, the phase and amplitude of each component of a signal transduction cascade has downstream consequences. 

*Results*
We report our analysis of alternative transcripts in the leptin signaling pathway which is responsible for the systemic regulation of macronutrient storage and energy balance. We focused on the circadian expression pattern of a critical component of the leptin signaling system, suppressor of cytokine signaling 3 (SOCS3). On an Affymetrix GeneChip 430A2 microarray, this gene is represented by three probe sets targeting different regions within the 3’ end of the last exon. We demonstrate that in murine brown adipose tissue two downstream 3’ probe sets experience circadian baseline oscillation in counter-phase to the upstream probe set. Such differences in expression patterns are a telltale sign of alternative splicing within the last exon of SOCS3. In contrast, all three probe sets oscillated in a common phase in murine liver and white adipose tissue. This suggests that the regulation of SOCS3 expression in brown fat is tissue specific. Another component of the signaling pathway, Janus kinase (JAK), is directly regulated by SOCS and has alternative transcript probe sets oscillating in counter-phase in a white adipose tissue specific manner.
 
*Conclusion*
We hypothesize that differential oscillation of alternative transcripts may provide a mechanism to maintain steady levels of expression in spite of circadian baseline variation

    Permutation test for periodicity in short time series data

    Get PDF
    Abstract Background Periodic processes, such as the circadian rhythm, are important factors modulating and coordinating transcription of genes governing key metabolic pathways. Theoretically, even small fluctuations in the orchestration of circadian gene expression patterns among different tissues may result in functional asynchrony at the organism level and may contribute to a wide range of pathologic disorders. Identification of circadian expression pattern in time series data is important, but equally challenging. Microarray technology allows estimation of relative expression of thousands of genes at each time point. However, this estimation often lacks precision and microarray experiments are prohibitively expensive, limiting the number of data points in a time series expression profile. The data produced in these experiments carries a high degree of stochastic variation, obscuring the periodic pattern and a limited number of replicates, typically covering not more than two complete periods of oscillation. Results To address this issue, we have developed a simple, but effective, computational technique for the identification of a periodic pattern in relatively short time series, typical for microarray studies of circadian expression. This test is based on a random permutation of time points in order to estimate non-randomness of a periodogram. The Permutated time, or Pt-test, is able to detect oscillations within a given period in expression profiles dominated by a high degree of stochastic fluctuations or oscillations of different irrelevant frequencies. We have conducted a comprehensive study of circadian expression on a large data set produced at PBRC, representing three different peripheral murine tissues. We have also re-analyzed a number of similar time series data sets produced and published independently by other research groups over the past few years. Conclusion The Permutated time test (Pt-test) is demonstrated to be effective for detection of periodicity in short time series typical for high-density microarray experiments. The software is a set of C++ programs available from the authors on the open source basis.</p

    Transactivation of EGFR by LPS induces COX-2 expression in enterocytes

    Get PDF
    Necrotizing enterocolitis (NEC) is the leading cause of gastrointestinal morbidity and mortality in preterm infants. NEC is characterized by an exaggerated inflammatory response to bacterial flora leading to bowel necrosis. Bacterial lipopolysaccharide (LPS) mediates inflammation through TLR4 activation and is a key molecule in the pathogenesis of NEC. However, LPS also induces cyclooxygenase-2 (COX-2), which promotes intestinal barrier restitution through stimulation of intestinal cell survival, proliferation, and migration. Epidermal growth factor receptor (EGFR) activation prevents experimental NEC and may play a critical role in LPS-stimulated COX-2 production. We hypothesized that EGFR is required for LPS induction of COX-2 expression. Our data show that inhibiting EGFR kinase activity blocks LPS-induced COX-2 expression in small intestinal epithelial cells. LPS induction of COX-2 requires Src-family kinase signaling while LPS transactivation of EGFR requires matrix metalloprotease (MMP) activity. EGFR tyrosine kinase inhibitors block LPS stimulation of mitogen-activated protein kinase ERK, suggesting an important role of the MAPK/ERK pathway in EGFR-mediated COX-2 expression. LPS stimulates proliferation of IEC-6 cells, but this stimulation is inhibited with either the EGFR kinase inhibitor AG1478, or the selective COX-2 inhibitor Celecoxib. Taken together, these data show that EGFR plays an important role in LPS-induction of COX-2 expression in enterocytes, which may be one mechanism for EGF in inhibition of NEC

    Identification of the protein kinases Pyk3 and Phg2 as regulators of the STATc-mediated response to hyperosmolarity

    Get PDF
    Cellular adaptation to changes in environmental osmolarity is crucial for cell survival. In Dictyostelium, STATc is a key regulator of the transcriptional response to hyperosmotic stress. Its phosphorylation and consequent activation is controlled by two signaling branches, one cGMP- and the other Ca(2+)-dependent, of which many signaling components have yet to be identified. The STATc stress signalling pathway feeds back on itself by upregulating the expression of STATc and STATc-regulated genes. Based on microarray studies we chose two tyrosine-kinase like proteins, Pyk3 and Phg2, as possible modulators of STATc phosphorylation and generated single and double knock-out mutants to them. Transcriptional regulation of STATc and STATc dependent genes was disturbed in pyk3(-), phg2(-), and pyk3(-)/phg2(-) cells. The absence of Pyk3 and/or Phg2 resulted in diminished or completely abolished increased transcription of STATc dependent genes in response to sorbitol, 8-Br-cGMP and the Ca(2+) liberator BHQ. Also, phospho-STATc levels were significantly reduced in pyk3(-) and phg2(-) cells and even further decreased in pyk3(-)/phg2(-) cells. The reduced phosphorylation was mirrored by a significant delay in nuclear translocation of GFP-STATc. The protein tyrosine phosphatase 3 (PTP3), which dephosphorylates and inhibits STATc, is inhibited by stress-induced phosphorylation on S448 and S747. Use of phosphoserine specific antibodies showed that Phg2 but not Pyk3 is involved in the phosphorylation of PTP3 on S747. In pull-down assays Phg2 and PTP3 interact directly, suggesting that Phg2 phosphorylates PTP3 on S747 in vivo. Phosphorylation of S448 was unchanged in phg2(-) cells. We show that Phg2 and an, as yet unknown, S448 protein kinase are responsible for PTP3 phosphorylation and hence its inhibition, and that Pyk3 is involved in the regulation of STATc by either directly or indirectly activating it. Our results add further complexities to the regulation of STATc, which presumably ensure its optimal activation in response to different environmental cues

    Identification of plasma lipid biomarkers for prostate cancer by lipidomics and bioinformatics

    Get PDF
    Background: Lipids have critical functions in cellular energy storage, structure and signaling. Many individual lipid molecules have been associated with the evolution of prostate cancer; however, none of them has been approved to be used as a biomarker. The aim of this study is to identify lipid molecules from hundreds plasma apparent lipid species as biomarkers for diagnosis of prostate cancer. Methodology/Principal Findings: Using lipidomics, lipid profiling of 390 individual apparent lipid species was performed on 141 plasma samples from 105 patients with prostate cancer and 36 male controls. High throughput data generated from lipidomics were analyzed using bioinformatic and statistical methods. From 390 apparent lipid species, 35 species were demonstrated to have potential in differentiation of prostate cancer. Within the 35 species, 12 were identified as individual plasma lipid biomarkers for diagnosis of prostate cancer with a sensitivity above 80%, specificity above 50% and accuracy above 80%. Using top 15 of 35 potential biomarkers together increased predictive power dramatically in diagnosis of prostate cancer with a sensitivity of 93.6%, specificity of 90.1% and accuracy of 97.3%. Principal component analysis (PCA) and hierarchical clustering analysis (HCA) demonstrated that patient and control populations were visually separated by identified lipid biomarkers. RandomForest and 10-fold cross validation analyses demonstrated that the identified lipid biomarkers were able to predict unknown populations accurately, and this was not influenced by patient's age and race. Three out of 13 lipid classes, phosphatidylethanolamine (PE), ether-linked phosphatidylethanolamine (ePE) and ether-linked phosphatidylcholine (ePC) could be considered as biomarkers in diagnosis of prostate cancer. Conclusions/Significance: Using lipidomics and bioinformatic and statistical methods, we have identified a few out of hundreds plasma apparent lipid molecular species as biomarkers for diagnosis of prostate cancer with a high sensitivity, specificity and accuracy

    Lipidomics Reveals Early Metabolic Changes in Subjects with Schizophrenia: Effects of Atypical Antipsychotics

    Get PDF
    There is a critical need for mapping early metabolic changes in schizophrenia to capture failures in regulation of biochemical pathways and networks. This information could provide valuable insights about disease mechanisms, trajectory of disease progression, and diagnostic biomarkers. We used a lipidomics platform to measure individual lipid species in 20 drug-naïve patients with a first episode of schizophrenia (FE group), 20 patients with chronic schizophrenia that had not adhered to prescribed medications (RE group), and 29 race-matched control subjects without schizophrenia. Lipid metabolic profiles were evaluated and compared between study groups and within groups before and after treatment with atypical antipsychotics, risperidone and aripiprazole. Finally, we mapped lipid profiles to n3 and n6 fatty acid synthesis pathways to elucidate which enzymes might be affected by disease and treatment. Compared to controls, the FE group showed significant down-regulation of several n3 polyunsaturated fatty acids (PUFAs), including 20:5n3, 22:5n3, and 22:6n3 within the phosphatidylcholine and phosphatidylethanolamine lipid classes. Differences between FE and controls were only observed in the n3 class PUFAs; no differences where noted in n6 class PUFAs. The RE group was not significantly different from controls, although some compositional differences within PUFAs were noted. Drug treatment was able to correct the aberrant PUFA levels noted in FE patients, but changes in re patients were not corrective. Treatment caused increases in both n3 and n6 class lipids. These results supported the hypothesis that phospholipid n3 fatty acid deficits are present early in the course of schizophrenia and tend not to persist throughout its course. These changes in lipid metabolism could indicate a metabolic vulnerability in patients with schizophrenia that occurs early in development of the disease. © 2013 McEvoy et al

    A novel prostate cancer subtyping classifier based on luminal and basal phenotypes

    Get PDF
    Background: Prostate cancer (PCa) is a clinically heterogeneous disease. The creation of an expression-based subtyping model based on prostate-specific biological processes was sought. Methods: Unsupervised machine learning of gene expression profiles from prospectively collected primary prostate tumors (training, n = 32,000; evaluation, n = 68,547) was used to create a prostate subtyping classifier (PSC) based on basal versus luminal cell expression patterns and other gene signatures relevant to PCa biology. Subtype molecular pathways and clinical characteristics were explored in five other clinical cohorts. Results: Clustering derived four subtypes: luminal differentiated (LD), luminal proliferating (LP), basal immune (BI), and basal neuroendocrine (BN). LP and LD tumors both had higher androgen receptor activity. LP tumors also had a higher expression of cell proliferation genes, MYC activity, and characteristics of homologous recombination deficiency. BI tumors possessed significant interferon γactivity and immune infiltration on immunohistochemistry. BN tumors were characterized by lower androgen receptor activity expression, lower immune infiltration, and enrichment with neuroendocrine expression patterns. Patients with LD tumors had less aggressive tumor characteristics and the longest time to metastasis after surgery. Only patients with BI tumors derived benefit from radiotherapy after surgery in terms of time to metastasis (hazard ratio [HR], 0.09; 95% CI, 0.01–0.71; n = 855). In a phase 3 trial that randomized patients with metastatic PCa to androgen deprivation with or without docetaxel (n = 108), only patients with LP tumors derived survival benefit from docetaxel (HR, 0.21; 95% CI, 0.09–0.51). Conclusions: With the use of expression profiles from over 100,000 tumors, a PSC was developed that identified four subtypes with distinct biological and clinical features. Plain language summary: Prostate cancer can behave in an indolent or aggressive manner and vary in how it responds to certain treatments. To differentiate prostate cancer on the basis of biological features, we developed a novel RNA signature by using data from over 100,000 prostate tumors—the largest data set of its kind. This signature can inform patients and physicians on tumor aggressiveness and susceptibilities to treatments to help personalize cancer management

    The Suppressor of AAC2 Lethality SAL1 Modulates Sensitivity of Heterologously Expressed Artemia ADP/ATP Carrier to Bongkrekate in Yeast

    Get PDF
    The ADP/ATP carrier protein (AAC) expressed in Artemia franciscana is refractory to bongkrekate. We generated two strains of Saccharomyces cerevisiae where AAC1 and AAC3 were inactivated and the AAC2 isoform was replaced with Artemia AAC containing a hemagglutinin tag (ArAAC-HA). In one of the strains the suppressor of ΔAAC2 lethality, SAL1, was also inactivated but a plasmid coding for yeast AAC2 was included, because the ArAACΔsal1Δ strain was lethal. In both strains ArAAC-HA was expressed and correctly localized to the mitochondria. Peptide sequencing of ArAAC expressed in Artemia and that expressed in the modified yeasts revealed identical amino acid sequences. The isolated mitochondria from both modified strains developed 85% of the membrane potential attained by mitochondria of control strains, and addition of ADP yielded bongkrekate-sensitive depolarizations implying acquired sensitivity of ArAAC-mediated adenine nucleotide exchange to this poison, independent from SAL1. However, growth of ArAAC-expressing yeasts in glycerol-containing media was arrested by bongkrekate only in the presence of SAL1. We conclude that the mitochondrial environment of yeasts relying on respiratory growth conferred sensitivity of ArAAC to bongkrekate in a SAL1-dependent manner. © 2013 Wysocka-Kapcinska et al

    HCV IRES manipulates the ribosome to promote the switch from translation initiation to elongation.

    Get PDF
    The internal ribosome entry site (IRES) of the hepatitis C virus (HCV) drives noncanonical initiation of protein synthesis necessary for viral replication. Functional studies of the HCV IRES have focused on 80S ribosome formation but have not explored its role after the 80S ribosome is poised at the start codon. Here, we report that mutations of an IRES domain that docks in the 40S subunit's decoding groove cause only a local perturbation in IRES structure and result in conformational changes in the IRES-rabbit 40S subunit complex. Functionally, the mutations decrease IRES activity by inhibiting the first ribosomal translocation event, and modeling results suggest that this effect occurs through an interaction with a single ribosomal protein. The ability of the HCV IRES to manipulate the ribosome provides insight into how the ribosome's structure and function can be altered by bound RNAs, including those derived from cellular invaders
    • 

    corecore