638 research outputs found

    EPOS: A Novel Use of CERIF for Data-intensive Science

    Get PDF
    AbstractOne of the key aspects of the approaching data-intensive science era is integration of data through interoperability of systems providing data products or visualization and processing services. Far from being simple, interoperability requires robust and scalable e-infrastructures capable of supporting it. In this work we present the case of EPOS, a plan for data integration in the field of Earth Sciences. We describe the design of its e-infrastructure and show its main characteristics. One of the main elements enabling the system to integrate data, data products and services is the metadata catalogue based on the CERIF metadata model. Such a model, modified to fit into the general e-infrastructure design, is part of a three-layer metadata architecture. CERIF guarantees a robust handling of metadata, which is in this case the key to the interoperability and to one of the feature of the EPOS system: the possibility of carrying on data intensive science orchestrating the distributed resources made available by EPOS data providers and stakeholders

    Current Research Information Systems (CRIS): Past, Present and Future

    Get PDF
    publishedVersio

    Quantitative spectroscopy of extreme helium stars - Model atmospheres and a non-LTE abundance analysis of BD+10^\circ2179?

    Get PDF
    Extreme helium stars (EHe stars) are hydrogen-deficient supergiants of spectral type A and B. They are believed to result from mergers in double degenerate systems. In this paper we present a detailed quantitative non-LTE spectral analysis for BD+10^\circ2179, a prototype of this rare class of stars, using UVES and FEROS spectra covering the range from \sim3100 to 10 000 {\AA}. Atmosphere model computations were improved in two ways. First, since the UV metal line blanketing has a strong impact on the temperature-density stratification, we used the Atlas12 code. Additionally, We tested Atlas12 against the benchmark code Sterne3, and found only small differences in the temperature and density stratifications, and good agreement with the spectral energy distributions. Second, 12 chemical species were treated in non-LTE. Pronounced non-LTE effects occur in individual spectral lines but, for the majority, the effects are moderate to small. The spectroscopic parameters give TeffT_\mathrm{eff} = 17 300±\pm300 K and logg\log g = 2.80±\pm0.10, and an evolutionary mass of 0.55±\pm0.05 MM_\odot. The star is thus slightly hotter, more compact and less massive than found in previous studies. The kinematic properties imply a thick-disk membership, which is consistent with the metallicity [[Fe/H]1]\approx-1 and α\alpha-enhancement. The refined light-element abundances are consistent with the white dwarf merger scenario. We further discuss the observed helium spectrum in an appendix, detecting dipole-allowed transitions from about 150 multiplets plus the most comprehensive set of known/predicted isolated forbidden components to date. Moreover, a so far unreported series of pronounced forbidden He I components is detected in the optical-UV.Comment: Accepted for publication in MNRAS, 26 pages, 19 Figure

    From open data to data-intensive science through CERIF

    Get PDF
    OGD (Open Government Data) is provided from government departments for transparency and to stimulate a market in ICT services for industry and citizens. Research datasets from publicly funded research commonly are associated with the open scholarly publications movement. However, the former world commonly is derived from the latter with generalisation and summarisation. There is advantage in a user of OGD being able to ‘drill down’ to the underlying research datasets. OGD encourages cross-domain research because the summarized data from different domains is more easily relatable. Bridging across the two worlds requires rich metadata; CERIF (Common European research Information Format) has proved itself to be ideally suited to this requirement. Utilising the research datasets is data-intensive science, a component of e-Research. Data-intensive science also requires access to an e-infrastructure. Virtualisation of this e-infrastructure optimizes this

    Limitations in Predicting the Space Radiation Health Risk for Exploration Astronauts

    Get PDF
    Despite years of research, understanding of the space radiation environment and the risk it poses to long-duration astronauts remains limited. There is a disparity between research results and observed empirical effects seen in human astronaut crews, likely due to the numerous factors that limit terrestrial simulation of the complex space environment and extrapolation of human clinical consequences from varied animal models. Given the intended future of human spaceflight, with efforts now to rapidly expand capabilities for human missions to the moon and Mars, there is a pressing need to improve upon the understanding of the space radiation risk, predict likely clinical outcomes of interplanetary radiation exposure, and develop appropriate and effective mitigation strategies for future missions. To achieve this goal, the space radiation and aerospace community must recognize the historical limitations of radiation research and how such limitations could be addressed in future research endeavors. We have sought to highlight the numerous factors that limit understanding of the risk of space radiation for human crews and to identify ways in which these limitations could be addressed for improved understanding and appropriate risk posture regarding future human spaceflight.Comment: Accepted for publication by Nature Microgravity (2018

    Second (Final) Report on EPOS-ICS Architecture

    Get PDF
    This deliverable describes the ICS-C final architecture. Based on user satisfaction with the architectural design and simple prototype of EPOS-PP (Preparatory Phase) the initial architecture was defined. During the period M1-M18 of EPOS-IP (Implementation Phase) the architecture was refined based on interactions with the TCS and presented at EPOS project meetings. During the period M19-M36 progressive iterative prototypes driven by evolving user requirements and aspirations have been developed allowing the architecture to be specified in much more detail and the components refined and implemented. For some components (ICS-D, CES) implementation is continuing because this requires especially close working with the TCS. Detailed work has been undertaken validating the ICS-C against the evolving and increasingly ambitious user requirements and – in particular – collecting the metadata describing the assets in the TCS to populate the catalog. The architecture has been designed using the latest advances in metadata (for the catalog) and architectural approach (microservices). A consistent spiral, agile systems development method has been used. As part of this work the teams of WP6 and WP7 of EPOS – each spread across several organisations – have been integrated into a functioning unit with appropriate skills and abilities for the tasks. There has been some delay in recruitment to provide the human resources required but this has been overcome and the work is on schedule

    Data integration and FAIR data management in Solid Earth Science

    Get PDF
    Integrated use of multidisciplinary data is nowadays a recognized trend in scientific research, in particular in the domain of solid Earth science where the understanding of a physical process is improved and made complete by different types of measurements – for instance, ground acceleration, SAR imaging, crustal deformation – describing a physical phenomenon. FAIR principles are recognized as a means to foster data integration by providing a common set of criteria for building data stewardship systems for Open Science. However, the implementation of FAIR principles raises issues along dimensions like governance and legal beyond, of course, the technical one. In the latter, in particular, the development of FAIR data provision systems is often delegated to Research Infrastructures or data providers, with support in terms of metrics and best practices offered by cluster projects or dedicated initiatives. In the current work, we describe the approach to FAIR data management in the European Plate Observing System (EPOS), a distributed research infrastructure in the solid Earth science domain that includes more than 250 individual research infrastructures across 25 countries in Europe. We focus in particular on the technical aspects, but including also governance, policies and organizational elements, by describing the architecture of the EPOS delivery framework both from the organizational and technical point of view and by outlining the key principles used in the technical design. We describe how a combination of approaches, namely rich metadata and service-based systems design, are required to achieve data integration. We show the system architecture and the basic features of the EPOS data portal, that integrates data from more than 220 services in a FAIR way. The construction of such a portal was driven by the EPOS FAIR data management approach, that by defining a clear roadmap for compliance with the FAIR principles, produced a number of best practices and technical approaches for complying with the FAIR principles. Such a work, that spans over a decade but concentrates the key efforts in the last 5 years with the EPOS Implementation Phase project and the establishment of EPOS-ERIC, was carried out in synergy with other EU initiatives dealing with FAIR data. On the basis of the EPOS experience, future directions are outlined, emphasizing the need to provide i) FAIR reference architectures that can ease data practitioners and engineers from the domain communities to adopt FAIR principles and build FAIR data systems; ii) a FAIR data management framework addressing FAIR through the entire data lifecycle, including reproducibility and provenance; and iii) the extension of the FAIR principles to policies and governance dimensions.publishedVersio
    corecore