336 research outputs found

    CD80 on Human T Cells Is Associated With FoxP3 Expression and Supports Treg Homeostasis

    Get PDF
    CD80 and CD86 are expressed on antigen presenting cells (APCs) and their role in providing costimulation to T cells is well established. However, it has been shown that these molecules can also be expressed by T cells, but the significance of this observation remains unknown. We have investigated stimuli that control CD80 and CD86 expression on T cells and show that in APC-free conditions around 40% of activated, proliferating CD4+ T cells express either CD80, CD86 or both. Expression of CD80 and CD86 was strongly dependent upon provision of CD28 costimulation as ligands were not expressed following TCR stimulation alone. Furthermore, we observed that CD80+ T cells possessed the hallmarks of induced regulatory T cells (iTreg), expressing Foxp3 and high levels of CTLA-4 whilst proliferating less extensively. In contrast, CD86 was preferentially expressed on INF-γ producing cells, which proliferated more extensively and had characteristics of effector T cells. Finally, we demonstrated that CD80 expressed on T cells inhibits CTLA-4 function and facilitates the growth of iTreg. Together these data establish endogenous expression of CD80 and CD86 by activated T cells is not due to ligand capture by transendocytosis and highlight clear differences in their expression patterns and associated functions

    The Evolution of Bat Vestibular Systems in the Face of Potential Antagonistic Selection Pressures for Flight and Echolocation

    Get PDF
    PMCID: PMC3634842This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

    Estimation of heterogeneity in malaria transmission by stochastic modelling of apparent deviations from mass action kinetics

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Quantifying heterogeneity in malaria transmission is a prerequisite for accurate predictive mathematical models, but the variance in field measurements of exposure overestimates true micro-heterogeneity because it is inflated to an uncertain extent by sampling variation. Descriptions of field data also suggest that the rate of <it>Plasmodium falciparum </it>infection is not proportional to the intensity of challenge by infectious vectors. This appears to violate the principle of mass action that is implied by malaria biology. Micro-heterogeneity may be the reason for this anomaly. It is proposed that the level of micro-heterogeneity can be estimated from statistical models that estimate the amount of variation in transmission most compatible with a mass-action model for the relationship of infection to exposure.</p> <p>Methods</p> <p>The relationship between the entomological inoculation rate (EIR) for falciparum malaria and infection risk was reanalysed using published data for cohorts of children in Saradidi (western Kenya). Infection risk was treated as binomially distributed, and measurement-error (Poisson and negative binomial) models were considered for the EIR. Models were fitted using Bayesian Markov chain Monte Carlo algorithms and model fit compared for models that assume either mass-action kinetics, facilitation, competition or saturation of the infection process with increasing EIR.</p> <p>Results</p> <p>The proportion of inocula that resulted in infection in Saradidi was inversely related to the measured intensity of challenge. Models of facilitation showed, therefore, a poor fit to the data. When sampling error in the EIR was neglected, either competition or saturation needed to be incorporated in the model in order to give a good fit. Negative binomial models for the error in exposure could achieve a comparable fit while incorporating the more parsimonious and biologically plausible mass action assumption. Models that assume negative binomial micro-heterogeneity predict lower incidence of infection at a given average exposure than do those assuming exposure to be uniform. The negative binomial model moreover provides an estimate of the variance of the within-cohort distribution of the EIR and hence of within cohort heterogeneity in exposure.</p> <p>Conclusion</p> <p>Apparent deviations from mass action kinetics in parasite transmission can arise from spatial and temporal heterogeneity in the inoculation rate, and from imprecision in its measurement. For parasites like <it>P. falciparum</it>, where there is no plausible biological rationale for deviations from mass action, this provides a strategy for estimating true levels of heterogeneity, since if mass-action is assumed, the within-population variance in exposure becomes identifiable in cohort studies relating infection to transmission intensity. Statistical analyses relating infection to exposure thus provide a valid general approach for estimating heterogeneity in transmission but only when they incorporate mass action kinetics and shrinkage estimates of exposure. Such analyses make it possible to include realistic levels of heterogeneity in dynamic models that predict the impact of control measures on transmission intensity.</p

    Are mice good models for human neuromuscular disease? Comparing muscle excursions in walking between mice and humans

    Get PDF
    The mouse is one of the most widely used animal models to study neuromuscular diseases and test new therapeutic strategies. However, findings from successful pre-clinical studies using mouse models frequently fail to translate to humans due to various factors. Differences in muscle function between the two species could be crucial but often have been overlooked. The purpose of this study was to evaluate and compare muscle excursions in walking between mice and humans

    Intensified surveillance after surgery for colorectal cancer significantly improves survival

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Postoperative surveillance after curative resection for colorectal cancer has been demostrated to improve survival. It remains unknown however, whether intensified surveillance provides a significant benefit regarding outcome and survival. This study was aimed at comparing different surveillance strategies regarding their effect on long-term outcome.</p> <p>Methods</p> <p>Between 1990 and 2006, all curative resections for colorectal cancer were selected from our prospective colorectal cancer database. All patients were offered to follow our institution's surveillance programm according to the ASCO guidelines. We defined surveillance as "intensive" in cases where > 70% appointments were attended and the program was completed. As "minimal" we defined surveillance with < 70% of the appointments attended and an incomplete program. As "none" we defined the group which did not take part in any surveillance.</p> <p>Results</p> <p>Out of 1469 patients 858 patients underwent "intensive", 297 "minimal" and 314 "none" surveillance. The three groups were well balanced regarding biographical data and tumor characteristics. The 5-year survival rates were 79% (intensive), 76% (minimal) and 54% (none) (OR 1.480, (95% CI 1.135-1.929); <it>p </it>< 0.0001), respectively. The 10-year survival rates were 65% (intensive), 50% (minimal) and 31% (none) (<it>p </it>< 0.0001), respectively. With a median follow-up of 70 months the median time of survival was 191 months (intensive), 116 months (minimal) and 66 months (none) (<it>p </it>< 0.0001). After recurrence, the 5-year survival rates were 32% (intensive, <it>p </it>= 0.034), 13% (minimal, <it>p </it>= 0.001) and 19% (none, <it>p </it>= 0.614). The median time of survival after recurrence was 31 months (intensive, <it>p </it>< 0.0001), 21 months (minimal, <it>p </it>< 0.0001) and 16 month (none, <it>p </it>< 0.0001) respectively.</p> <p>Conclusion</p> <p>Intensive surveillance after curative resection of colorectal cancer improves survival. In cases of recurrent disease, intensive surveillance has a positive impact on patients' prognosis. Large randomized, multicenter trials are needed to substantiate these results.</p

    Avoiding Treatment Interruptions: What Role Do Australian Community Pharmacists Play?

    Get PDF
    OBJECTIVE: To explore the reported practice of Australian community pharmacists when dealing with medication supply requests in absence of a valid prescription. METHODS: Self-administered questionnaire was posted to 1490 randomly selected community pharmacies across all Australian states and territories. This sample was estimated to be a 20% of all Australian community pharmacies. RESULTS: Three hundred eighty five pharmacists participated in the study (response rate achieved was 27.9% (there were 111 undelivered questionnaires). Respondents indicated that they were more likely to provide medications to regular customers without a valid prescription compared to non-regular customers (p&lt;0.0001). However, supply was also influenced by the type of prescription and the medication requested. In the case of type of prescription (Standard, Authority or Private) this relates to the complexity/probability of obtaining a valid prescription from the prescriber at a later date (i.e. supply with an anticipated prescription). Decisions to supply and/or not supply related to medication type were more complex. For some cases, including medication with potential for abuse, the practice and/or the method of supply varied significantly according to age and gender of the pharmacist, and pharmacy location (p&lt;0.05). CONCLUSIONS: Although being a regular customer does not guarantee a supply, results of this study reinforce the importance for patients having a regular pharmacy, where pharmacists were more likely to continue medication supply in cases of patients presenting without a valid prescription. We would suggest, more flexible legislation should be implemented to allow pharmacists to continue supplying of medication when obtaining a prescription is not practical

    The epidemiology of malaria in adults in a rural area of southern Mozambique

    Get PDF
    BACKGROUND: Epidemiological studies of malaria in adults who live in malaria endemic areas are scarce. More attention to the natural history of malaria affecting adults is needed to understand the dynamics of malaria infection and its interaction with the immune system. The present study was undertaken to investigate the clinical, parasitological and haematological status of adults exposed to malaria, and to characterize parasites in these individuals who progressively acquire protective immunity. METHODS: A cross-sectional survey of 249 adults was conducted in a malaria endemic area of Mozambique. Clinical, parasitological and haematological status of the study population was recorded. Sub-microscopic infections and multiplicity of infections were investigated using polymerase chain reaction (PCR) and restriction fragment length polymorphism of Plasmodium falciparum merozoite surface protein 2 (msp2). RESULTS: Prevalence of P. falciparum infection by microscopy (14%) and PCR (42%) decreased progressively during adulthood, in parallel with an increase in the prevalence of sub-microscopic infections. Anaemia was only related to parasitaemia as detected by PCR. Multiplicity of infection decreased with age and was higher in subjects with high P. falciparum densities, highlighting density-dependent constraints upon the PCR technique. CONCLUSION: Adults of Manhiça progressively develop non-sterile, protective immunity against P. falciparum malaria. The method of parasite detection has a significant effect on the observed natural history of malaria infections. A more sensitive definition of malaria in adults should be formulated, considering symptoms such as diarrhoea, shivering and headache, combined with the presence of parasitaemia

    Microcephaly with or without chorioretinopathy, lymphoedema, or mental retardation (MCLMR): review of phenotype associated with KIF11 mutations

    Get PDF
    Microcephaly with or without chorioretinopathy, lymphoedema, or mental retardation (MCLMR) (MIM No.152950) is a rare autosomal dominant condition for which a causative gene has recently been identified. Mutations in the kinesin family member 11 (KIF11) gene have now been described in 16 families worldwide. This is a review of the condition based on the clinical features of 37 individuals from 22 families. This report includes nine previously unreported families and additional information for some of those reported previously. The condition arose de novo in 8/20 families (40%). The parental results were not available for two probands. The mutations were varied and include missense, nonsense, frameshift, and splice site and are distributed evenly throughout the KIF11 gene. In our cohort, 86% had microcephaly, 78% had an ocular abnormality consistent with the diagnosis, 46% had lymphoedema, 73% had mild-moderate learning difficulties, 8% had epilepsy, and 8% had a cardiac anomaly. We identified three individuals with KIF11 mutations but no clinical features of MCLMR demonstrating reduced penetrance. The variable expression of the phenotype and the presence of mildly affected individuals indicates that the prevalence may be higher than expected, and we would therefore recommend a low threshold for genetic testing

    Age-structured gametocyte allocation links immunity to epidemiology in malaria parasites

    Get PDF
    Background Despite a long history of attempts to model malaria epidemiology, the over-riding conclusion is that a detailed understanding of host-parasite interactions leading to immunity is required. It is still not known what governs the duration of an infection and how within-human parasite dynamics relate to malaria epidemiology. Presentation of the hypothesis Immunity to Plasmodium falciparum develops slowly and requires repeated exposure to the parasite, which thus generates age-structure in the host-parasite interaction. An age-structured degree of immunity would present the parasite with humans of highly variable quality. Evolutionary theory suggests that natural selection will mould adaptive phenotypes that are more precise (less variant) in "high quality" habitats, where lifetime reproductive success is best. Variability in malaria parasite gametocyte density is predicted to be less variable in those age groups who best infect mosquitoes. Thus, the extent to which variation in gametocyte density is a simple parasite phenotype reflecting the complex within-host parasite dynamics is addressed. Testing the hypothesis Gametocyte densities and corresponding infectiousness to mosquitoes from published data sets and studies in both rural and urban Cameroon are analysed. The mean and variation in gametocyte density according to age group are considered and compared with transmission success (proportion of mosquitoes infected). Across a wide range of settings endemic for malaria, the age group that infected most mosquitoes had the least variation in gametocyte density, i.e. there was a significant relationship between the variance rather than the mean gametocyte density and age-specific parasite transmission success. In these settings, the acquisition of immunity over time was evident as a decrease in asexual parasite densities with age. By contrast, in an urban setting, there were no such age-structured relationships either with variation in gametocyte density or asexual parasite density. Implications of the hypothesis Gametocyte production is seemingly predicted by evolutionary theory, insofar as a reproductive phenotype (gametocyte density) is most precisely expressed (i.e. is most invariant) in the most infectious human age group. This human age group would thus be expected to be the habitat most suitable for the parasite. Comprehension of the immuno-epidemiology of malaria, a requisite for any vaccine strategies, remains poor. Immunological characterization of the human population stratified by parasite gametocyte allocation would be a step forward in identifying the salient immunological pathways of what makes a human a good habitat
    corecore