45 research outputs found

    Knots in Four Dimensions and the Fundamental Group

    Get PDF
    This paper is an introduction to knotted spheres in four dimensions (analogous to knotted circles in three dimensions). We define what a knotted sphere is and describe a to visually represent them, via movies. The fundamental group of the complement of a knot is a powerful invariant and we describe this invariant in detail giving a convenient algorithm for computing it. Lots of examples are given, including the simplest non-trivial locally flat knot

    Full-Depth Reclamation (FDR) for Preventive Maintenance: SR 65 Analysis

    Get PDF
    The INDOT and HNTB field inspection and management team for the I-65 Northwest Indiana Design-Build-Best Value project in Lake County, Indiana, will discuss differences in the implementation and reporting requirements for field personnel via this project delivery method versus a traditional design-bidbuild INDOT project

    Full-Depth Reclamation (FDR) for Preventive Maintenance: SR 65 Analysis

    Get PDF
    The INDOT and HNTB field inspection and management team for the I-65 Northwest Indiana Design-Build-Best Value project in Lake County, Indiana, will discuss differences in the implementation and reporting requirements for field personnel via this project delivery method versus a traditional design-bidbuild INDOT project

    Software for Remote Monitoring of Space-Station Payloads

    Get PDF
    Telescience Resource Kit (TReK) is a suite of application programs that enable geographically dispersed users to monitor scientific payloads aboard the International Space Station (ISS). TReK provides local ground support services that can simultaneously receive, process, record, playback, and display data from multiple sources. TReK also provides interfaces to use the remote services provided by the Payload Operations Integration Center which manages all ISS payloads. An application programming interface (API) allows for payload users to gain access to all data processed by TReK and allows payload-specific tools and programs to be built or integrated with TReK. Used in conjunction with other ISS-provided tools, TReK provides the ability to integrate payloads with the operational ground system early in the lifecycle. This reduces the potential for operational problems and provides "cradle-to-grave" end-to-end operations. TReK contains user guides and self-paced tutorials along with training applications to allow the user to become familiar with the system

    Korarchaeota Diversity, Biogeography, and Abundance in Yellowstone and Great Basin Hot Springs and Ecological Niche Modeling Based on Machine Learning

    Get PDF
    Over 100 hot spring sediment samples were collected from 28 sites in 12 areas/regions, while recording as many coincident geochemical properties as feasible (>60 analytes). PCR was used to screen samples for Korarchaeota 16S rRNA genes. Over 500 Korarchaeota 16S rRNA genes were screened by RFLP analysis and 90 were sequenced, resulting in identification of novel Korarchaeota phylotypes and exclusive geographical variants. Korarchaeota diversity was low, as in other terrestrial geothermal systems, suggesting a marine origin for Korarchaeota with subsequent niche-invasion into terrestrial systems. Korarchaeota endemism is consistent with endemism of other terrestrial thermophiles and supports the existence of dispersal barriers. Korarchaeota were found predominantly in >55°C springs at pH 4.7–8.5 at concentrations up to 6.6×106 16S rRNA gene copies g−1 wet sediment. In Yellowstone National Park (YNP), Korarchaeota were most abundant in springs with a pH range of 5.7 to 7.0. High sulfate concentrations suggest these fluids are influenced by contributions from hydrothermal vapors that may be neutralized to some extent by mixing with water from deep geothermal sources or meteoric water. In the Great Basin (GB), Korarchaeota were most abundant at spring sources of pH<7.2 with high particulate C content and high alkalinity, which are likely to be buffered by the carbonic acid system. It is therefore likely that at least two different geological mechanisms in YNP and GB springs create the neutral to mildly acidic pH that is optimal for Korarchaeota. A classification support vector machine (C-SVM) trained on single analytes, two analyte combinations, or vectors from non-metric multidimensional scaling models was able to predict springs as Korarchaeota-optimal or sub-optimal habitats with accuracies up to 95%. To our knowledge, this is the most extensive analysis of the geochemical habitat of any high-level microbial taxon and the first application of a C-SVM to microbial ecology

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Understanding optimal decision-making in wargaming

    Get PDF
    This research aims to gain insight into optimal wargaming decision-making mechanisms using neurophysiological measures by investigating whether brain activation and visual scan patterns predict attention, perception, and/or decision-making errors through human-in-the-loop wargaming simulation experiments. We investigate whether brain activity and visual scan patterns can explain optimal wargaming decision making and its development with a within-person design; i.e., the transition from exploring the environment to exploiting the environment. We describe ongoing research that uses neurophysiological predictors in two military decision making tasks that tap reinforcement learning and cognitive flexibility.Army Research Office (ARO), PO Box 1221, ResearchApproved for public release; distribution is unlimited
    corecore