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KNOTS IN FOUR DIMENSIONS AND THE
FUNDAMENTAL GROUP

JEFF BOERSEMA AND ERICA J. TAYLOR

1. Introduction

The theory of knots is an exciting field of mathematics. Not only is
it an area of active research, but it is a topic that generates consider-
able interest among recreational mathematicians (including undergrad-
uates). Knots are something that the lay person can understand and
think about. However, proving some of the most basic results about
them can involve some very high-powered mathematics. Classical knot
theory involves thinking about knots in 3-dimensional space, a space
for which we have considerable intuition. In this paper, we wish to
push your intuition as we consider knots in 4-dimensional space.

The purpose of this paper is twofold. The first is to provide an
introduction to knotted 2-spheres in 4-dimensional space. We found
that while many people have studied knots in four dimensions and
have written about them, there is no suitable introduction available
for the novice. This is addressed in Sections 2 - 5, which could stand
alone. By way of introducing knots in 4 dimensions, we also provide a
brief overview of knots in 3 dimensions (classical knots). We encourage
a reader who wants a full introduction to classical knot theory to see
[11, 2, 10, 16]. This part of the paper also discusses ways of viewing
4-dimensional space and a property of knots called local flatness. The
focus of this paper is knots that satisfy this property.

In what follows we are concerned with an important invariant for
knots called the fundamental group. This approach is highly motivated
by a powerful result by Freedman in 1983 [4], which tells us that for
locally flat embeddings of S2 in S4, the only knot that has the same
fundamental group as the unknot is the unknot itself. So, while the
fundamental group is still not a perfect invariant, it does allow us to
distinguish between those locally flat embeddings that are knotted and
those that are not.

With this in mind, we discuss a method for computing the fundamen-
tal group of a knot. One such method is an algorithm first presented
by Fox in [3]; we call this The Fox Presentation and give a statement
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2 JEFF BOERSEMA AND ERICA J. TAYLOR

and proof of this algorithm in Section 6.2. This algorithm, however, is
unnecessarily tedious, and we present in Algorithm 6.5 a modified ver-
sion, which is a slicker simpler tool to use in calculating fundamental
groups.

These two heavy-hitting results, Freedman’s Theorem and the Fox
Presentation, appear together for the first time in this paper. Their
combination forms a powerful tool in the analysis of knots in 4-dimensions.
We will use them to study many examples. Specifically, we have an
example of a locally flat embedding that is knotted and another em-
bedding that is unknotted despite the fact that one of its 3-dimensional
cross-sections is a knotted embedding of S1. Both these examples have
appeared before, but the proofs are made simpler by the new approach.
Appearing for the first time in this paper is also an example of an em-
bedding, not locally flat, that is knotted but has the same fundamental
group as the unknot. This demonstrates that Freedman’s theorem can-
not be extended to embeddings that are not locally flat. We also apply
this tool and Freedman’s result in Section 7 to determine the minimum
number of critical points required for an embedding to be knotted.

Before we proceed, we must give a few definitions.

Definition 1.1. The n-dimensional sphere, Sn, is defined by Sn =
{x ∈ Rn+1 : |x| = 1}.

Intuitively, S1 denotes a circle, and S2 denotes a standard sphere,
as in the surface of a ball in three dimensions. Note that S2, with one
point removed, can be flattened onto the plane R2. Thus, we can think
of S2 as the union of R2 and one other point, usually thought of as ∞.
This is called the one-point compactification of R2. Similarly, S3 can
be thought of as the one-point compactification of R3. So, locally, we
can think of S3 as R3. Visualizing S4, the one-point compactification
of R4, is a bit more tricky; we will discuss how to do this in Section 2.

Definition 1.2. A continuous function f : X −→ Y is an embedding
if and only if f is injective and open.

An embedding defines a homeomorphism between X and its image
f(X) as a subspace of Y . In general, knot theory is the study of
embeddings of a k-sphere into an n-sphere (k < n). So we can think
of a knot as a copy of Sk living in (embedded in) Sn.

2. Classical Knots

By a classical knot we mean an embedding of S1 into S3. The triv-
ial example of such an embedding is the unknot, which is shown in
Figure 1.
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Figure 1

Of course, some embeddings such as those shown in Fibure 2 can be
much more complex and interesting.

Figure 2

Notice that each of the last two examples shown in Figure 2 can be
changed into the other just by shifting the image of the embedding
around in space. When one knot can be deformed into the other in
this way while leaving the string connected and without passing one
arc through another, we say that the two knots are equivalent. We
call such a deformation an ambient isotopy. The principal problem in
knot theory is the problem of determining if two given embeddings are
equivalent.

The usual strategy for dealing with this problem is to assign to each
knot an algebraic object such as a polynomial or a group. These assign-
ments should be made in such a way that if two knots are equivalent,
then they are assigned the same object. We call such a mapping an
invariant. Examples of invariants are the fundamental group of the
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complement [16] and the Jones polynomial [10]. We will be talking
about the former in Section 6.

These invariants are useful, but none are perfect. That is, it is
possible for two inequivalent knots to be assigned the same object.

3. 4-dimensional space

The subject of this paper is knots in S4. Since most of us cannot visu-
alize four dimensions at once, the easiest way to think about something
in S4 is to think about cross-sections. If the fourth dimension is t, then
for every time t, we can look at a 3-dimensional cross-section of our 4-
dimensional object. This is analogous to representing a 3-dimensional
object as a series of 2-dimensional cross-sections.

As an example, what would S3 = {(x, y, z, t) : x2 + y2 + z2 + t2 = 1}
look like? Let’s see what the cross-sections Ct look like for a few values
of t. If |t| > 1, Ct = ∅. For some values of t in the interval [−1, 1] we
have

C−1 = {(x, y, z) : x2 + y2 + z2 + (−1)2 = 1}
= {(0, 0, 0)}

C− 1
2

= {(x, y, z) : x2 + y2 + z2 + (−1

2
)2 = 1}

= {(x, y, z) : x2 + y2 + z2 =
3

4
}

C0 = {(x, y, z) : x2 + y2 + z2 = 1}

C 1
2

= {(x, y, z) : x2 + y2 + z2 =
3

4
}

C1 = {(0, 0, 0)}

So the series of cross-sections begins at t = −1 with a point at
(0, 0, 0,−1). This point becomes a 2-sphere that grows to radius 1 as t
goes to 0. This sphere shrinks again to the point (0, 0, 0, 1) as t moves
from 0 to 1. We can visualize this by drawing a series of pictures shown
in Figure 3. Each diagram there is a picture of the intersection of S3

with the 3-dimensional space {(x, y, z, t) : x, y, z ∈ R} where t is fixed.
Now we can consider knots in S4. Our first inclination is to consider

embeddings of S1. However, all piecewise linear embeddings of S1

into S4 are equivalent to the unknot. (A piecewise linear embedding
is an embedding that is comprised of a finite number of straight line
segments.) To see this, consider any such embedding. Because it is
piecewise linear it can be projected into three dimensions, say t = 0,
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Figure 3

and again into a 2-dimensional plane except for at a finite number
of crossing points. We now have the type of projection discussed in
classical knot theory. Recall that a knot can be unknotted by changing
a finite number of crossings; that is, by changing an overcrossing to an
undercrossing or vice versa. We will describe how, in four dimensions,
a crossing can be changed without passing one arc through another.

Say we have an arc α that crosses under an arc σ. The idea is to
pull α into the fourth dimension and then let it pass by σ. It will not
intersect σ because the two arcs no longer lie in the same cross section
with respect to t. Once α has passed by σ it can be pushed back into
the projection t = 0. The result is that α now crosses over σ rather
than under.

Pictorially, the series of pictures in Figure 4 represents what happens
to α in this process. The dotted lines represent the t = 1 cross-section,
while the solid lines represent the t = 0 cross-section.

Figure 4
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This procedure can be described a bit more rigorously. Assume our
knot lies in the 3-space with t fixed at 0. Arrange it so that the crossing
occurs at x = 0 and y = 0. The segment α crosses at the level z = −1

2
along the line x = y , and σ crosses above it at the level z = 0 along
x = −y. So in a neighborhood of the crossing, α is the straight line from
(−ε,−ε,−1

2
, 0) to (ε, ε,−1

2
, 0) and σ is the straight line from (−ε, ε, 0, 0)

to (ε,−ε, 0, 0).
The α arc can be described by the function f0 : [0, 1] −→ S4.

f0(t) =

 (−ε,−ε,−1
2
, 0) 0 ≤ t ≤ 3

8
(−ε + 8ε(t− 3

8
),−ε + 8ε(t− 3

8
),−1

2
, 0) 3

8
≤ t ≤ 5

8
(ε, ε,−1

2
, 0) 5

8
≤ t ≤ 1

We want to manipulate f0 to get a function f1 that describes an arc
α′ passing over σ.

f1(t) =



(−ε,−ε,−1
2
, 0) 0 ≤ t ≤ 1

8
(−ε,−ε,−1

2
+ 8(t− 1

8
), 0) 1

8
≤ t ≤ 2

8
(−ε,−ε, 1

2
, 0) 2

8
≤ t ≤ 3

8
(−ε + 8ε(t− 3

8
),−ε + 8ε(t− 3

8
), 1

2
, 0) 3

8
≤ t ≤ 5

8
(ε, ε, 1

2
, 0) 5

8
≤ t ≤ 6

8
(ε, ε, 1

2
− 8(t− 6

8
), 0) 6

8
≤ t ≤ 7

8
(ε, ε,−1

2
, 0) 7

8
≤ t ≤ 1

When shifting f , it will pass through two intermediate stages (anal-
ogous to the two intermediate stages in Figure 4). These two stages
are described by f 1

3
and f 2

3
.

f 1
3
(t) =


(−ε,−ε,−1

2
, 8t) 0 ≤ t ≤ 1

8
(−ε,−ε,−1

2
, 1) 1

8
≤ t ≤ 3

8
(−ε + 8ε(t− 3

8
),−ε + 8ε(t− 3

8
),−1

2
, 1) 3

8
≤ t ≤ 5

8
(ε, ε,−1

2
, 1) 5

8
≤ t ≤ 7

8
(ε, ε,−1

2
, 1− 8(t− 7

8
)) 7

8
≤ t ≤ 1

f 2
3
(t) =



(−ε,−ε,−1
2
, 8t) 0 ≤ t ≤ 1

8
(−ε,−ε,−1

2
+ 8(t− 1

8
, 1)) 1

8
≤ t ≤ 2

8
(−ε,−ε, 1

2
, 1) 2

8
≤ t ≤ 3

8
(−ε + 8ε(t− 3

8
),−ε + 8ε(t− 3

8
), 1

2
, 1) 3

8
≤ t ≤ 5

8
(ε, ε, 1

2
, 1) 5

8
≤ t ≤ 6

8
(ε, ε, 1

2
− 8(t− 6

8
), 1) 6

8
≤ t ≤ 7

8
(ε, ε,−1

2
, 1− 8(t− 7

8
)) 7

8
≤ t ≤ 1

By linearly interpolating between these four functions, we can pro-
duce a function fs(t), continuous in both variables, taking the arc α to
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the arc α′ without intersecting σ. This function is tedious to write out
but can be produced easily by the reader.

We can repeatedly apply this procedure to as many crossings as
necessary in order to render the knot untied. Thus we have the desired
function showing us how to manipulate a piecewise linear embedding
of S1 in S4.

4. Embeddings of 2-spheres

We have seen that embeddings of S1 in S4 can always be untied.
The knots that we consider in S4 are embeddings of 2-spheres. We will
view these knots by taking cross-sections for different values of t, as
discussed above. We will take these in such a way that, for each value
of t, the hyperplane will intersect the 2-sphere in one or more closed
curves.

First consider the unknot, represented by a 2-sphere with radius 2,
S2 = {(x, y, z) : x2 + y2 + z2 = 4}. If we view this as a series of 3-
dimensional slices, then for each value of t, we will see either nothing,
a single point, or an unknotted circle lying in 3-dimensional space,
as shown in Figure 5. By mentally interpolating between the cross-
sections, we can visualize the whole sphere (so to speak).

In this case, since we know what the 2-sphere looks like, we can
understand how these circles are actually connected.

Figure 5

So how might cross-sections of a 2-sphere look if it were knotted?
One example is in Figure 6. We see a point for |t| = 2, a small trefoil
shown for |t| = 1, and a larger trefoil for t = 0.
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Figure 6

This particular knot is called the suspension of the trefoil. Another
way to describe this knot is to consider the trefoil in a 3-dimensional
plane, and connect each of its points with line segments to a point
above and a point below in the 4th dimension, as in Figure 7. (In
4-dimensional space, these lines will not intersect.) In general, there is
a suspension of every classical knot.

In one sense, the suspension of a knot is particularly nice. Other
than at the endpoints, each cross-section is the same type of classical
knot: they differ only in size. Not every knot will have this property.
For example, Figure 8 shows another example of a knotted 2-sphere.

Notice that in Figure 6, the knot has a minimum at t = −2, has
one component for |t| < 2, and has a maximum at t = 2. In Figure 8,
the knot has two minima at t = −4, which become two components.
These combine into one component at t = −1 through what we call a
saddle point transformation, and split through another saddle point at
t = 1. This knot has two maxima at t = 4.

The maxima, minima, and saddle points are called critical points. At
a maximum a new component emerges and at a minimum a component
disappears. A saddle point transformation will affect the cross-sections
in a knot diagram by increasing or reducing the number of components.
Figure 9 demonstrates the coming together of the arcs at a saddle point.

How do we know that our diagrams represent embeddings of spheres?
We do this by analyzing components in the sequence of cross-sections
as above. We then compare these schemes to cross-sections of a 2-
sphere in 3-space. Figure 6 compares to a standard 2-sphere, while
Figure 8 compares to the distorted sphere shown in Figure 9. To be
sure that a series of diagrams actually represents an embedding of S2

in S4, we should be able to compare the number of components and
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Figure 7

Figure 8

location of saddle points with cross-sections of a distorted 2-sphere in
S3. Think of this distorted 2-sphere as the domain of the embedding.
It can show us how many components we will see in a corresponding
slice of 3-space and how they will connect, but not how they will be
arranged or knotted within the slice.
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Figure 9

A knotted 2-sphere is piecewise linear (PL) if it can be composed
of a finite number of triangles. We restrict ourselves to PL knots,
to be assured that we need only a finite number of cross-sections to
understand what is happening in the knot. You may object that our
pictures of knots appear smooth and nonlinear. However, what is of
concern is equivalence classes of knots. Every knot that will appear in
this paper is equivalent via ambient isotopy to a piecewise linear knot.

5. Locally Flat Embeddings

In dealing with classical knots, restricting ourselves to PL embed-
dings is helpful in that it prevents local knotting. Each point of a PL
classical knot has a neighborhood that looks like a straight line seg-
ment, or a line segment with one bend. Thus, the PL classical knot
can be globally knotted, but cannot be locally knotted.

PL is not sufficient for this assurance in 4-space. We can have a
2-sphere made out of a finite number of triangles and still have knot-
ting within any neighborhood of a point. Such points are called non-
locally flat points. For example, the points on the top and bottom of
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Figure 10

the trefoil suspension are non-locally flat points: any sufficiently close
cross-section is a trefoil knot. All other points in the suspension are
locally flat.

We call on Rolfson for a technical definition of locally flat ([16]).

Definition 5.1. A knot Σ in S4 is locally flat at x if there is a closed
neighborhood N of x in S4 such that (N, Σ∩N) is homeomorphic, as a
pair, with the standard ball pair (B4, B2).

By Bn, we mean the n-dimensional ball {x ∈ Rn : |x| ≤ 1}. Homeo-
morphic as a pair means that there is a homeomorphism that maps N
to B4 and also maps Σ∩N to B2. This means that the portion of the
sphere immediately close to the point can be flattened out, to appear
as a disk in B4.

If the knot Σ is locally flat at x for every x ∈ Σ, we say that Σ
is locally flat. For example, the knot pictured in Figure 8 is a locally
flat knot. We would like to be able to tell if a knot is locally flat by
examining the cross-sections. It has been shown in [7] that every PL lo-
cally flat 2-sphere is ambient isotopic to a sphere in normal form. This
means that it can be arranged so that the only critical points are the
maxima, minima, and saddle points; and that when each component
first appears, it is unknotted and unlinked. The only other changes
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that can occur between diagrams are Reidemeister moves. For exam-
ple, notice that in Figure 8, the two components are unlinked until
after the saddle point transformation at |t| = 1. Also, each additional
component must join with another through a saddle point before it dis-
appears. Otherwise, it is not connected to the whole, and represents
part of a separate sphere.

So far, we have given no good explanation as to why these embed-
dings of 2-spheres in 4-space are actually knots. We will say that an
embedding of a 2-sphere Σ is knotted, or non-trivial if there is no
ambient isotopy of 4-space that brings Σ to the unknot, or standard
2-sphere. This notion is analogous to knotting for classical knots in S3.

There are two ways that an embedding can be knotted: locally and
globally. If an embedding of a 2-sphere has a non-locally flat point,
then it is knotted. Since the region near the non-locally flat point
cannot be smoothed out, the entire sphere cannot be deformed into a
trivial sphere. These 2-spheres are locally knotted.

We have not yet shown how to determine if an embedding of a locally
flat sphere is globally knotted. Our instinct might suggest that a locally
flat knot is non-trivial if one of its cross-sections is non-trivial. However,
this is not the case – we will see a counter example in Section 6. To
discuss global knotting, we will employ the fundamental group.

5.1. Combining Non-Locally Flat Points. In Section 6, we will
discuss an algorithm to compute the fundamental group associated
with a knot. This algorithm will only directly apply to knots that have
at most one non-locally flat point. When we refer to the fundamental
group of a knot, we are actually dealing with a property of the comple-
ment of the knot. It turns out that, if we have a knot with more than
one non-locally flat point, we can alter this knot in order to identify all
such points without changing the complement. That is, we describe a
new knot, with only one non-locally flat point, but with a complement
homeomorphic to the original.

Suppose we have a piecewise linear knot that has more than one non-
locally flat point. First, we should notice that because it is piecewise
linear, it can only have a finite number of such points. The points in
the interior of the triangles, and on the interior of the line segments
of their boundaries, are all locally flat. The only points that could be
non-locally flat are the vertices: a vertex is a non-locally flat point if
the triangles that emanate from it form a knot along their boundary,
as in a suspension.

Suppose we have found two such points. We need to find an arc that
joins these points and find a function that will shrink the arc to a point,
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while being a homeomorphism of the complement of the arc. We can
use the coordinates defined in Figure 11 for each straight segment in
this arc, with end points at (0, 0) and (0, 1). We will first define the
function g : [0, 2] −→ [0, 2] which shrinks this segment to a point.

g(y) =

{
0 0 ≤ y ≤ 1
2y − 2 1 ≤ y ≤ 2

Now, we need to define a function on S4 that will shrink the segment
and be a homeomorphism of its complement. In the plane (z = 0, t =
0), define the function f to be the identity mapping outside the square
(−1 < x < 1, 0 < y < 2), while inside, define it as

f(x, y) = (x, (1− |x|)g(y) + |x|y)

The reader can check that this function is continuous, onto, and in-
jective except for the segment; thus, it is a homeomorphism on the
complement of the segment. This shrinking can be extended to four
dimensions by a similar formula. We can repeat this for all segments
in the arc, so that the two non-locally flat points are identified. We
can then repeat this process until we have connected each of the the
non-locally flat points to our first one, so that we are left with only one
such point.

Figure 11

We now have a new knot with only one non-locally flat point, but
with a complement homeomorphic to our original complement. If we
take a cross-section very close to this point, the cross-section will be a
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knotted embedding of S1 called a slice knot. It turns out that not all
classical knot can appear as a slice knot.

If we are first considering an arbitrary knot with more than one
non-locally flat point, we will not be able to predict what the new
cross-sections will be once we have combined these points. But be-
cause we know that we can combine these points without changing the
complement, the fundamental group can’t tell the difference. Hence we
know that considering all knots with one non-locally flat point suffices
for considering all non-locally flat knots — at least this is true when
our mode of study is the fundamental group.

6. The Fundamental Group

The fundamental group is an algebraic invariant assigned to a topo-
logical space. For a good introduction to fundamental groups the reader
is referred to [15]. Briefly, given a space X and a point x (called the
base point) in that space we define a loop to be a continuous function
f : [0, 1] −→ X such that f(0) = f(1) = x. Two loops f1 and f2 are
equivalent if f1 can be continuously deformed into f2 keeping the end-
points fixed. The set of equivalence classes of loops are the elements in
the group.

The operation of the group is juxtaposition, thought of as the pro-
cess of forming a loop by tracing the path of one loop followed by an-
other. Juxtaposition of equivalence classes, it turns out, is well defined
in terms of juxtaposition of representative loops. These equivalence
classes form a group under the operation juxtaposition. If X is a path
connected space, then the group does not depend on the choice of our
base point x. So the fundamental group of the space X is unique up
to isomorphism. We denote the fundamental group of X by π(X).

Because the fundamental groups of two homeomorphic spaces are
isomorphic, this group provides us with certain information about the
topological properties of a space. It doesn’t provide us complete in-
formation, however: it is possible for two non-homeomorphic spaces to
have the same (isomorphic) fundamental group.

In knot theory, we like to look at the complement of a knot. If there is
an ambient isotopy between two knots, then there is a homeomorphism
between their respective complements. As we have seen, the converse is
not true. We have seen in Section 5 that a knot with several non-locally
flat points and a knot with only one non-locally flat point may have
homeomorphic complements. Thus, the complement is not a complete
invariant for a knot in 4 dimensions.
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It turns out that if we restrict ourselves to the class of locally flat
knots, then the complement is a complete invariant. This is true for
both knots in 3-dimensions and knots in 4-dimensions. Note that in
3 dimensions, the condition of being locally flat is the same as the
condition of being piecewise linear.

Then the fundamental group of a space is an invariant for a space
and the complement of a knot is an invariant for the knot; therefore
the fundamental group of the complement of a knot is an invariant
for a knot. We will use this to distinguish between two given knots:
if the fundamental groups of the complements of the two knots are
non-isomorphic, then the knots are not equivalent.

Although the converse is not true in general, we have the following
partial result for the case π = Z.

Theorem 6.1. For n = 3 or 4, a locally flat embedding of Sn−2 into
Sn is unknotted iff π(Sn − Σ) ∼= Z.

This result was completed by Freedman in 1983 [4] for n = 4, the
case we’re interested in. (For the n = 3 case, see [2, 16].) Because of
this result, we can determine whether or not a locally flat embedding
is knotted precisely by determining whether or not the fundamental
group of the complement is isomorphic to Z.

There is another important aspect of the fundamental group of a
space that involves a few more definitions:

Definition 6.1. Let A be a subset of a topological space X. A contin-
uous function r : X −→ A is a retraction if r(a) = a for all a ∈ A.

Definition 6.2. A retraction r : X −→ A is a strong deformation
retraction if it is homotopic to the identity map. That is, there exists
a continuous function f : X × [0, 1] −→ X such that for all x ∈ X,
f(x, 0) = x and f(x, 1) = r(x) and for all a ∈ A and all t ∈ [0, 1],
f(a, t) = a.

We have the following theorem concerning the effect a strong defor-
mation retraction has on the fundamental group. A complete discussion
(including proof) can be found in [13, 17].

Theorem 6.2. If r : X −→ A is a strong deformation retraction, then
π(X) and π(A) are isomorphic.

This theorem is very useful for finding the fundamental group of a
space. When calculating the fundamental group of a space X, it is often
convenient to find a strong deformation retraction of X to a subspace
A, and then calculate the fundamental group of A. We will use this
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method when we calculate the Fox presentation of the fundamental
group of the complement of a knotted two-sphere in S4.

6.1. The Wirtinger Presentation. We’ll now return to classical
knots in S3 for a moment to see how we calculate the fundamental
groups in this case. The standard method produces a presentation
(called the Wirtinger presentation) of the group. Recall that a group
presentation is a way of representing a finitely generated group by list-
ing the generators and certain relationships (called relations) between
the generators. The reader is referred to [16, 17] for a complete intro-
duction to the Wirtinger presentation and to an undergraduate abstract
algebra text for an introduction to group presentations in general.

Suppose that Σ is a classical knot given by a projection showing n
crossings. There is an easy algorithm for reading the generators and
relations from this projection. The n crossings separate Σ into n arcs
α1, . . . , αn, where each arc begins and ends at an undercrossing. Give
the knot an orientation – the particular orientation does not affect the
group. Pick a base point x in S3 − Σ well above the plane of the
projection. (Think of it as being identified with your eye as your look
at the presentation.) Then associated with each arc, αk, is a loop ak in
the complement that goes around that arc in the right-hand direction
(see Figure 12). The fundamental group of S4 − Σ is generated by
(a1, . . . , an).

Figure 12
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The relations are acquired by looking more closely at each cross-
ing. A loop l that passes around the crossing point below the arcs
is homotopic to the trivial element. But l can also be described as a
juxtaposition of the four loops around the four arcs that l passes under
at the crossing point. As seen in Figure 13, the loop l represents the
element aia

−1
j a−1

i aj+1. This gives us the relation aia
−1
j a−1

i aj+1 = 1. We
can repeat this for each crossing point to get n relations r1, . . . , rn. It
turns out that one of the relations is redundant. The group π(S4 −Σ)
has the Wirtinger presentation (a1, . . . , an : r1, . . . , rn−1). A proof that
this group presentation is really the group of the complement of Σ can
be found in [16, 2, 17].

Figure 13

Example 1: The square knot in Figure 14 has six crossings; so we
label the six arcs defined by the crossings: a, b, c, d, e, f . By an abuse
of notation, we will also use these variables to refer to the respec-
tive generators of the fundamental group. Then the relations we get
from the six crossings are ac−1a−1b = 1, acb−1c−1 = 1, df−1e−1f = 1,
f−1aea−1 = 1, efe−1a−1 = 1, and cbd−1b−1 = 1. (After this, we will
denote the relation r = 1 simply by r.) We may drop the last relation,
because it is a consequence of the others. Then using the first, third,
and fourth relations we can express the generators c, e, and d in terms
of the generators a, b, and f as follows: c = a−1ba, d = f−1a−1faf ,
and e = a−1fa. Thus, when we write out the remaining two relations
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in terms of our remaining three generators, our presentation can be
written as (a, b, f : aba = bab, afa = faf). Although not obvious, it
turns out that this group is not the same group as the fundamental
group of the unknot.

It is often difficult to understand groups when they are given by
a presentation such as this. In fact, two groups given by completely
different presentations may turn out to be isomorphic! One can show
that the group (a, b, f : aba = bab, afa = faf) is not isomorphic to Z
by showing it is not commutative. We won’t carry out the details in
this example, but we will do so in Example 2 in Section 6.2.

Figure 14

One note must be made concerning the fundamental group of the
complement of a knot. Assume that k1 and k2 are two distinct pro-
jections of equivalent knots. Since the two projections are different,
their Wirtinger presentations, W1 and W2, are different. On the other
hand, since the knots are equivalent, the groups represented by these
Wirtinger presentations are isomorphic. This means that any element
in one group can be represented by a word in the other group. In par-
ticular if α is an arc in k2, any loop around α in the complement can
be written as an element in W1. This also holds true for relations. If
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r2 is a relation in W2, we can translate that relation into a relation r1

in terms of the generators of W1; then r1 can be derived in W1 based
on the original relations of W1.

6.2. The Fox Presentation. Now, we will turn to the problem of the
calculation of the fundamental group of the complement of a knotted
2-sphere Σ in S4. We will be elaborating on the procedure described
in Fox and Kinoshita [3, 9].

We will describe two algorithms for calculating the fundamental
group of the complement of a knot. The merit of the first is that it is
a conceptual description of how the fundamental group of the knot is
gleaned from the groups of its cross-sections. The second, however, is
easier and quicker for practical use. Think of Algorithm 6.3 as a lemma
to Algorithm 6.5.

Suppose we are given a standard description of a knot Σ by cross-
sections as described in Section 4. It is arranged such that its critical
points occur at t = s1, s2, . . . , sn with s1 < s2 < · · · < sn. We will
assume that Σ has at most one non-locally flat point. If it has one, we
will assume that it is at sn. We have seen in Section 5.1 that there is no
loss in generality in assuming that Σ has no more than one non-locally
flat point.

Now, for all i ∈ {1, 2, . . . , n − 1}, let Csi
be the cross-section of S4

containing the critical point si and let Ri denote the region {(x, y, z, t) :
si < t < si+1)} − Σ. Let R0 = {(x, y, z, t) : t < s1} and Rn =
{(x, y, z, t) : t > sn}. To visualize this setup, see Figure 15. To simplify
the discussion, let X ′ denote X − Σ for any region X.

There is a strong deformation retraction of R′
i to one of its cross-

sections, denoted C ′
i, so the fundamental group of R′

i is isomorphic to
the fundamental group of C ′

i. So, by Theorem 6.2 we can calculate
the Wirtinger presentation Wi of π(C ′

i) to get a presentation of the
fundamental group of R′

i. (Note that W0 and Wn represent the trivial
group.)

We now have a finite set of spaces R′
i, each of which has fundamental

group Wi. The fundamental group of the space S4 −Σ is derived from
these groups. We will describe how to derive the fundamental group of
the union of two adjacent regions and the cross-section between them.
This process can be repeated as many times as necessary to get the
fundamental group of the entire space S4 − Σ.

Given two adjacent regions R′
i−1 and R′

i, look at the cross-section
between them, C ′

si
. This cross-section contains, in addition to ordinary

arcs with possible crossing points, a critical point that we will assume
is at (0, 0, 0, si). In the cross-section this critical point will appear as
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Figure 15

either an isolated point (if the critical point is a relative extremum) or
as an intersection of arcs (if it is a saddle point).

Now, just as in the Wirtinger presentation, consider the set of arcs of
Csi

∩Σ. These arcs will have endpoints not only at the undercrossings
as before, but also at the intersection in the case of a saddle point.
Denote these γ1, . . . , γν . For each arc γj there is a corresponding arc αj

in Ri−1 ∩Σ immediately below Csi
∩Σ ; and a corresponding arc βj in

Ri∩Σ immediately above. Let aj be the element of Wi−1 corresponding
to a loop around αj in R′

i−1 and similarly let bj be the element of Wi

corresponding to a loop around βj in R′
i.

Algorithm 6.3. With the notation as above, the Fox Presentation of
the fundamental group of R′

i−1 ∪C ′
si
∪R′

i is given by all the generators
and relations of Wi−1 and Wi, together with the relations a1 = b1, a2 =
b2, . . . , aν = bν.

Note that R′
i−1 ∪ C ′

si
∪R′

i is the same as (Ri−1 ∪ Csi
∪Ri)− Σ.

In order to prove that this algorithm works we need the following
theorem concerning the fundamental group of the union of two spaces.
A discussion of this theorem, including a proof, can be found in [13, 17].

Theorem 6.4 (Seifert-VanKampen). Let U and V be path-connected
open spaces such that U ∩ V is non-empty and path-connected, and
π(U∩V ) is finitely generated. Let (g1, . . . , gm : r1, . . . , rn) and (h1, . . . , hp :
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s1, . . . , sq) be presentations of the fundamental groups of U and V
respectively. Then the fundamental group of U ∪ V is presented by
(g1, . . . , gm, h1, . . . , hp : r1, . . . , rn, s1, . . . , sq, u1 = v1, . . . , ut = vt). The
ui’s above are expressions for the generators of U ∩V in terms of π(U);
similarly, the vi’s are expression for the same generators of U ∩ V in
terms of π(V ).

This theorem tells us how to get a presentation of the fundamental
group of the union of two spaces given the presentations for the funda-
mental groups of the original two spaces. To paraphrase the theorem,
the group presentation for π(U ∪ V ) contains all the generators and
relations of π(U) and π(V ) plus some new relations that relate the
generators of π(U) to the generators of π(V ). Using this theorem, we
are now ready to prove Algorithm 6.3.

Proof. [Algorithm 6.3] Let Wi−1 = (c1, . . . , cl : u1, . . . , up) and Wi =
(d1, . . . , dm : v1, . . . , vq). The sets R′

i−1 and R′
i are open so we would like

to apply the VanKampen theorem to these two spaces. Unfortunately
they are disjoint so we can’t do this. The strategy, then, will be to
create an intermediate space U that intersects both spaces. We will
calculate π(U ′) and use the Van Kampen theorem twice: once to join
R′

i−1 and U ′, and again to join that union to R′
i.

Let V be a closed epsilon ball about (0, 0, 0, si), small enough that
V ∩ Σ is homeomorphic to a two dimensional disk. (It is a prop-
erty of any PL sphere that this can be done.) Then there is a strong
deformation retraction of V radially to its boundary. This may be ex-
tended to a strong deformation retraction of (Ri−1 ∪ Csi

∪ Ri) − Σ to
(Ri−1 ∪ Csi

∪ Ri) − Σ − V . Because a strong deformation retraction
induces an isomorphism of the fundamental group, we may calculate
the fundamental group of (Ri−1 ∪ Csi

∪ Ri) − Σ − V to get the group
of (Ri−1 ∪ Csi

∪Ri)− Σ.
Let U = {(x, y, z, t) : si − δ < t < si + δ}. Choose δ small enough

so that the only single critical point of U is (0, 0, 0, si). This insures
that there are no critical points in U − V . Additionally, choose δ
smaller than the radius of V to make sure all cross-sections of U ′ − V
are homeomorphic to each other. The fundamental group of U ′ − V
can then be calculated from the single cross-section C ′

si
− V . The

presentation of π(U ′−V ) is given by (e1, . . . , en : w1, . . . , wr), where ej

represents a loop around the arc γj and the relations are drawn from
the crossings of C ′

si
.

Now, to find π(R′
i−1 ∪ U ′ − V ) we must consider the intersection of

U ′ − V and R′
i−1 − V . In order to apply Van Kampen’s theorem we
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must find the generators of the group of this intersection. Take a rep-
resentative cross-section Cτ of R′

i−1 ∩ U ′ close enough to Csi
that the

Wirtinger presentation of π(C ′
τ ) is the same as the Wirtinger presen-

tation of π(C ′
si
): (e1, . . . , en : w1, . . . , wr). For each ej, there is a corre-

sponding element aj of Wi−1 (expressed as a word in the cj’s). Using
the Van Kampen theorem, π(U ′ ∪ R′

i−1 − V ) = (c1, . . . , cl, e1, . . . , en :
u1, . . . , up, w1, . . . , wr, e1 = a1, . . . , en = an).

We repeat this process to adjoin R′
i−V to U ′∪R′

i−1−V . For each ej,
there is a corresponding element bj of Wi (expressed as a word in the
dj’s). Thus π(R′

i ∪ U ′ ∪ R′
i−1 − V ) = (c1, . . . , cl, d1, . . . dm, e1, . . . , en :

u1, . . . , up, v1, . . . vq, w1, . . . , wr, e1 = a1, . . . , en = an, e1 = b1, . . . en =
bn).

But notice that we can algebraically eliminated the ei’s since those
generators can be expressed in terms of the ai’s or the bi’s. At the same
time, each relation wi can be obtained from the relations of the ui’s or
the vi’s. Hence the fundamental group presentation can be reduced to
π(R′

i∪U ′∪R′
i−1−V ) = (c1, . . . , cl, d1, . . . dm : u1, . . . , up, v1, . . . vq, a1 =

b1, . . . an = bn). �

Algorithm 6.3 is a good description of how the fundamental groups
of the regions R′

i together form the the fundamental group of S4 − Σ.
However, in practice it is not a very efficient method. In general, group
presentations are clumsy to work with. The method of Algorithm 6.3
involves taking two presentations together and then adding a number
of relations on top of that. This could provide for some very large pre-
sentations, especially if Σ has many critical points. Fortunately, these
presentations can be greatly simplified. We will develop an algorithm
that incorporates the simplification directly in the calculation of the
group. It will be based on Algorithm 6.3 but is much easier to use.

Assume we have a description of a knot Σ by cross-sections as be-
fore. Each region Ri has a fundamental group that is represented by
a Wirtinger presentation Wi. The top region (that is, the region with
the greatest value of t) Rn doesn’t intersect Σ at all, so π(Rn) is trivial.
As we move down from Rn we first come across the critical point that
is necessarily some sort of maximum and possibly a non-locally flat
point. Because it could be a non-locally flat point, Rn−1 could be a
non-trivial knot with Wirtinger presentation Wn−1. Now by a rather
trivial application of Algorithm 6.3, Wn−1 is also a presentation for the
fundamental group of the complement of Rn ∪ Csn ∪ Rn−1. This will
be our base group.

From here we continue down the knot, and as we pass each critical
point, si, we will add C ′

si
∪ R′

i−1 to our space. Each time we add a
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region to our space, the fundamental group will change. It turns out
that each change is rather small and manageable. We can do this until
we have added the last space R′

1. In this way we have calculated the
group of the entire space S4 − Σ.

Now let’s use Algorithm 6.3 to see exactly how the fundamental
group changes when we add a region. The rest of the critical points
will be locally flat and will be either relative maxima, relative minima,
or saddle points. Assume that we have a critical point P = (0, 0, 0, si)
and that W is a presentation for the fundamental group of {(x, y, z, t) :
t > si} − Σ. Then Wi−1 is a presentation for the fundamental group
of Ri−1. The algorithm’s process of identifying arcs across the cross-
section means that outside a neighborhood of P , the two groups sim-
plify into one, since each generator and each relation of Wi−1 can be
reduced to and expressed in W . Then we only need to worry about
what happens near P .

First we will consider the case that P is a relative maximum. Then
Wi−1 has a generator corresponding to the simple closed circle that was
born at P . This generator will not be identified with anything in W .
Hence, when we take the union of the two spaces the net result for the
group will be an added generator.

In the case of a minimum, the group Wi−1 has one less generator
than W has. Then taking the union of the two spaces will have no
effect on W .

Finally, consider the case when P is a saddle point. Refer to Fig-
ure 10 for this case. In the cross-section Csi

there are four arcs near P ,
γ1, γ2, γ3, γ4. These correspond to two arcs in Ri: α1 and α2 and two
arcs in Ri−1: β1 and β2. Let a1 and a2 be elements in W that represent
loops around α1 and α2. Similarly let b1 and b2 be elements in Wi−1

that represent loops around β1 and β2. By Algorithm 6.3 the group of
the union includes the four relations: a1 = b1, a1 = b2, a2 = b1, and
a2 = b2. In terms of W , this reduces to a1 = a2. Hence, the net effect
on W is this one new relation.

In this process, our base group was taken from the region Rn−1.
However, there is nothing special about this particular region. We
may start from any region and then work out toward the top and
the bottom, adding new generators and relations as we go. (Notice
that as we go up, our concepts of maxima and minima switch.) It is
usually convenient to start with the region with the most complicated
fundamental group. In the case of a non-locally flat knot, this will most
likely be Rn−1; but for a locally flat knot this isn’t always the case.

We can summarize these results in the following algorithm:



24 JEFF BOERSEMA AND ERICA J. TAYLOR

Algorithm 6.5. Suppose we are given a knot Σ embedded in S4 such
that its critical points occur at t = s1, s2, . . . , sn with s1 < s2 < · · · < sn

and if Σ has a non-locally flat point, it is at sn. Then the fundamental
group π(S4 − Σ) can be calculated as follows.

(1) Calculate the Wirtinger presentation W of the knot of any cross-
section Ck of Rk.

(2) Move down (in the negative direction of t) the knot until you
reach a critical point P and make the following change to W :
(a) If P is a maximum, add a generator to W . This generator

represents a loop around the new arc that appears at the
maximum.

(b) If P is a minimum, there is no change.

(c) If P is a saddle point, add the relation α1 = α2 to W ; α1

and α2 are expressions in W for loops around the two ele-
ments a1 and a2 that come together at the saddle point.

(3) Repeat step 2 until you have reached the bottom of the knot.

(4) Move up (in the positive direction of t) the knot from Rk until
you reach a critical point P and make the appropriate change
to W :
(a) If P is a maximum, there is no change.

(b) If P is a minimum, add a generator to W . This generator
represents a loop around the new arc that appears at the
minimum.

(c) If P is a saddle point, add a relation as in step 2c.

(5) Repeat step 4 until you have reached the top of the knot.

Example 2: Consider the knot in Figure 8. We will use Algo-
rithm 6.5 to calculate the fundamental group of this knot. The middle
cross-section (t = 0) is exactly the square knot of Example 1. We
calculated the fundamental group to be presented by (a, b, f : aba =
bab, afa = faf). This is our base group. Then as we move in the
negative direction we come across a saddle point in which the arcs b
and f come together. This identity simplifies our group to only two
generators ad one relation: (a, b : aba = bab).
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As we continue in the negative direction, the two components dis-
appear. These minima have no effect on the group, according to Algo-
rithm 6.5.

Then we move in the positive direction from t = 0; again we come
to a saddle point in which arcs b and f come together. The relation
b = f has already been added to our presentation; our group will not
change. Finally, the two components disappear at the top of the knot.
When we are moving in the positive direction of t, the maxima have no
effect on the group. So the fundamental group of the knot in Figure 8
is (a, b : aba = bab). (This group is the same group as the fundamental
groups of the trefoil knot in 3 dimensions and of the trefoil suspension
in 4 dimensions.)

We can show that this group is not isomorphic to Z by finding a
homomorphism φ from this group to a group of permutations on three
elements. Let φ be defined by φ(a) = (1 2) and φ(b) = (1 3). No-
tice that the image of the relation holds true. That is, φ(aba) =
(1)(2 3) = φ(bab). Therefore φ is a homomorphism. However, no-
tice that (1 2)(1 3) = (1 2 3) 6= (1 3 2) = (1 3)(1 2). Since φ(a) does
not commute with φ(b), it must be that a does not commute with b.
Hence, the fundamental group of this knot is not isomorphic to Z. Ac-
cording to Theorem 6.1, this proves the existence of a knotted 2-sphere
in 4-space!

Figure 16

Example 3: Figure 16 shows a slight variation of the knot in Fig-
ure 8. The middle cross-section and the saddle point in the negative
direction are the same as that of Figure 8. However, in the positive
direction the saddle point is different than that of the previous example.

The calculation of the fundamental group will be similar to that of
Example 2. We start with the base group of the square knot: (a, b, f :
aba = bab, afa = faf). In the negative direction we get one new
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relation, as before, reducing the group to (a, b : aba = bab). Now
observe that the saddle point on the positive side is between the arcs
b and e. We expressed e in terms of the other generators: e = a−1fa.
But now, we know that b = f , so we have e = a−1ba. Then, the relation
that we get when we join arc b to arc e is b = a−1ba. This means that a
and b commute, so our relation aba = bab becomes a2b = ab2 or a = b.
Therefore, the group of the complement of the knot in Figure 16 is
(a : −) ∼= Z. In this case Theorem 6.1 tells us that this embedding is
unknotted! This is an interesting example of an embedding of S2 into
S4 because it is not knotted but has a cross-section that is knotted in
S3. This example was first presented by Stallings.

Example 4: This is an example of a non-locally flat (hence non-
trivial) knot whose fundamental group of the complement is isomorphic
to the group of the integers. This shows that Freedman’s Theorem is
not true for all piecewise linear knots; it requires that they be locally
flat. First we will describe the knot, and then we will calculate the
fundamental group.

Figure 17

This knot has a non-locally flat point at the top and is, therefore, a
nontrivial knot. Below that point is the slice knot shown in Figure 17.
As we move down, the next critical point is a saddle point in which
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arc a and arc l come together. Observe that after this modification,
what we have left is a pair of unlinked, unknotted components. Finally,
these unknots disappear at minima.

To calculate the Fox presentation of this knot, we first calculate
the Wirtinger presentation of the knot in Figure 17 and then add the
relation a = l. The Wirtinger presentation of a 21-crossing knot is
rather messy. It has 21 generators: a, b, . . . , u. The 21 relations are:
i) ar−1a−1q
ii) asb−1s−1

iii) bo−1c−1o
iv) cpc−1q−1

v) cj−1c−1i
vi) cec−1f−1

vii) cmd−1m−1

viii) du−1e−1u
ix) eue−1a−1

x) em−1e−1l
xi) fig−1i−1

xii) gmg−1n−1

xiii) gu−1g−1t
xiv) guh−1u−1

xv) hm−1i−1m
xvi) jp−1j−1o
xvii) jok−1o−1

xviii) ks−1l−1s
xix) lrl−1s−1

xx) nq−1o−1q
xxi) qt−1q−1s
(While only 20 of these relations are necessary, for convenience we can
consider all 21.)

Using these relations it is possible to reduce the presentation to only
six generators and five relations. However, it is more efficient to con-
sider the unreduced presentation.

When we add the relation a = l, the fundamental group becomes Z.
To show this it is sufficient to show that all generators become equal
to each other.

Consider relations i and xix. They can be expressed as q = ara−1

and s = lrl−1 respectively. But if a = l then q = s. Now that we
know q = s, we can cancel the q−1 and s in xxi and we have qt−1 = 1,
or q = t. We leave it to the reader to verify that, by this process of
manipulation of relations and identification of generators, all generators
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can be shown to be equal. Once we are down to one generator, each of
the relations becomes trivial.

Therefore, the fundamental group of the complement of this knot is
isomorphic to Z. So Theorem 6.1 does not hold for all piecewise linear
knots, only locally flat knots.

7. Minimizing Critical Points

We do not have tables of knotted 2-spheres as we did for classical
knots. It is difficult to come up with a notion of complexity to use
as an index that would be analogous to the crossing number, which
is used in the classical knot case. One possibility is the number of
critical points that occur in the embedding. An embedding that is
non-locally flat can be knotted with only two critical points, such as a
suspension with only a maximum and minimum. In what follows we
will determine the minimum number of critical points necessary for a
locally flat embedding to be globally knotted.

Theorem 7.1. A locally flat, PL, knotted embedding of a 2-sphere in
S4 must have at least two maxima, two minima, and two saddle points.

Proof. First, recall from Section 3 that any embedding of a locally flat
PL 2-sphere is ambient isotopic to a 2-sphere in normal form. Thus,
the only critical points that need occur are maxima, saddle points,
and minima, with all the saddle points between the maxima and all
the minima. Furthermore, each component is unknotted and unlinked
when it first appears. This has been shown in [7].

There is another restriction on these critical points that arises from
what is called the Euler Characteristic of the 2-sphere. Euler’s formula
is commonly stated in terms of planar graphs, as vertices + faces −
edges = 2. It turns out that a strong deformation retraction can be
made between a distorted 2-sphere that is the domain of the embedding
and a planar graph; we can associate minima with vertices, maxima
with faces, and saddle points with edges. Thus we have minima +
maxima− saddle points = 2.

Intuitively, a standard 2-sphere will have one maximum, one mini-
mum, and no saddle points, thus satisfying the formula. A distortion
which adds a maximum or a minimum will also add a saddle point,
thus preserving the total. The above result is stated explicitly in [7]; a
proof of a more general case can be found in [14].

With these restrictions on our critical points, only certain combi-
nations are possible involving fewer than two maxima, two minima, or
two saddle points. We will use Algorithm 6.5 to show that fundamental
group in each of these cases is isomorphic to Z.
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Case 1: An embedding with one minimum, no saddle points, and
one maximum. Because the component that first appears at the maxi-
mum must be unknotted, any cross-section between the maximum and
the minimum will have the fundamental group of the complement iso-
morphic to Z. By Algorithm 6.5, this is the fundamental group of the
whole sphere.

Case 2: An embedding with n minima, n − 1 saddle points, and
one maximum. Again, because of our result from [7], we know that a
cross-section taken just below the maximum must be unknotted. Thus
its fundamental group will have only one generator, say a, and will
be isomorphic to Z. This is our initial cross-section when applying
Algorithm 6.5.

As we move down the knot, we will find only minima, which will
not affect the fundamental group, and saddle points. Because we begin
with one component and end with n components, each of the n − 1
saddle points must add a component. Each of the components must
be initially unknotted and unlinked. Thus the relations we add at the
saddle points each relate two unlinked, unknotted components to the
one component immediately above them. In this way we see that all the
generators are equal to a, and we have no other relations. Therefore,
the fundamental group of the whole sphere will be isomorphic to Z.

Case 3: An embedding with one minimum, n− 1 saddle points, and
n maxima. This is identical to the preceding case; we simply take our
initial cross-section just above the minimum and proceed up, according
to Algorithm 6.5.

We now see that, with no maxima, one maximum, or n maxima and
one minimum, the embedding must have a fundamental group isomor-
phic to Z. By Theorem 6.1, these are all equivalent to the unknot.
Therefore, a locally flat embedding must have at least two minima,
two saddle points, and two maxima to be knotted. �

We have already seen in Fibure 8 an example of a locally flat embed-
ding with exactly this many critical points, and that has a fundamental
group that is not isomorphic to Z. Therefore, this is the fewest number
of critical points possible in a locally flat knot.
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