153 research outputs found

    Metaphylactic antimicrobial effects on occurrences of antimicrobial resistance in \u3ci\u3eSalmonella enterica, Escherichia coli\u3c/i\u3e and \u3ci\u3eEnterococcus\u3c/i\u3e spp. measured longitudinally from feedlot arrival to harvest in high-risk beef cattle

    Get PDF
    Aims: Our objective was to determine how injectable antimicrobials affected populations of Salmonella enterica, Escherichia coli and Enterococcus spp. in feedlot cattle. Methods and Results: Two arrival date blocks of high-risk crossbred beef cattle (n = 249; mean BW = 244 kg) were randomly assigned one of four antimicrobial treatments administered on day 0: sterile saline control (CON), tulathromycin (TUL), ceftiofur (CEF) or florfenicol (FLR). Faecal samples were collected on days 0, 28, 56, 112, 182 and study end (day 252 for block 1 and day 242 for block 2). Hide swabs and subiliac lymph nodes were collected the day before and the day of harvest. Samples were cultured for antimicrobial-resistant Salmonella, Escherichia coli and Enterococcus spp. The effect of treatment varied by day across all targeted bacterial populations (p ≤ 0.01) except total E. coli. Total E. coli counts were greatest on days 112, 182 and study end (p ≤ 0.01). Tulathromycin resulted in greater counts and prevalence of Salmonella from faeces than CON at study end (p ≤ 0.01). Tulathromycin and CEF yielded greater Salmonella hide prevalence and greater counts of 128ERYR E. coli at study end than CON (p ≤ 0.01). No faecal Salmonella resistant to tetracyclines or third-generation cephalosporins were detected. Ceftiofur was associated with greater counts of 8ERYR Enterococcus spp. at study end (p ≤ 0.03). By the day before harvest, antimicrobial use did not increase prevalence or counts for all other bacterial populations compared with CON (p ≥ 0.13). Conclusions: Antimicrobial resistance (AMR) in feedlot cattle is not caused solely by using a metaphylactic antimicrobial on arrival, but more likely a multitude of environmental and management factors

    The effects of administering different metaphylactic antimicrobials on growth performance and health outcomes of high-risk, newly received feedlot steers

    Get PDF
    Bovine respiratory disease (BRD) is the primary animal health concern facing feedlot producers. Many antimicrobial mitigation strategies are available, but few studies have compared feedlot performance during both the receiving and finishing periods following application of different antimicrobials used as metaphylaxis at arrival. The objective of this study was to compare antimicrobial metaphylaxis methods on clinical health and growth performance across both the receiving and finishing periods. A total of 238 multiple-sourced steers in two source blocks were used in a generalized complete block design. The four treatments included: 1) a negative control, 5 mL of sterile saline injected subcutaneously (CON); 2) subcutaneous administration of florfenicol at 40 mg/kg of BW (NUF); 3) subcutaneous administration of ceftiofur in the posterior aspect of the ear at 6.6 mg/kg of BW (EXC); and 4) subcutaneous administration of tulathromycin at 2.5 mg/kg of BW (DRA). The morbidity rate for the first treatment of BRD was decreased for the DRA and EXC treatments compared to CON and NUF (P \u3c 0.01). Additionally, average daily gain (ADG), dry matter intake (DMI), and gain-to-feed (G:F) were greater (P ≤ 0.02) in the DRA treatment during the receiving period compared to all other treatments. The ADG was also greater (P \u3c 0.05) for EXC than the CON treatment throughout the finishing period. Nonetheless, other growth performance variables did not differ among metaphylactic treatments during the finishing period (P ≥ 0.14). Likewise, no differences in carcass characteristics or liver abscess score were observed (P ≥ 0.18). All complete blood count (CBC) variables were affected by day (P ≤ 0.01) except mean corpuscular hemoglobin concentration (P = 0.29). Treatment × time interactions were observed for platelet count, white blood cell (WBC) count, monocyte count and percentage, and lymphocyte percentage (P ≤ 0.03). However, there were no observed hematological variables that differed among treatment (P ≥ 0.10). The results indicate that some commercially available antimicrobials labeled for metaphylactic use are more efficacious than others in decreasing morbidity rate

    A dynamic Bayesian network for identifying protein-binding footprints from single molecule-based sequencing data

    Get PDF
    Motivation: A global map of transcription factor binding sites (TFBSs) is critical to understanding gene regulation and genome function. DNaseI digestion of chromatin coupled with massively parallel sequencing (digital genomic footprinting) enables the identification of protein-binding footprints with high resolution on a genome-wide scale. However, accurately inferring the locations of these footprints remains a challenging computational problem

    The muscle protein dysferlin accumulates in the Alzheimer brain

    Get PDF
    Dysferlin is a transmembrane protein that is highly expressed in muscle. Dysferlin mutations cause limb-girdle dystrophy type 2B, Miyoshi myopathy and distal anterior compartment myopathy. Dysferlin has also been described in neural tissue. We studied dysferlin distribution in the brains of patients with Alzheimer disease (AD) and controls. Twelve brains, staged using the Clinical Dementia Rating were examined: 9 AD cases (mean age: 85.9 years and mean disease duration: 8.9 years), and 3 age-matched controls (mean age: 87.5 years). Dysferlin is a cytoplasmic protein in the pyramidal neurons of normal and AD brains. In addition, there were dysferlin-positive dystrophic neurites within Aβ plaques in the AD brain, distinct from tau-positive neurites. Western blots of total brain protein (RIPA) and sequential extraction buffers (high salt, high salt/Triton X-100, SDS and formic acid) of increasing protein extraction strength were performed to examine solubility state. In RIPA fractions, dysferlin was seen as 230–272 kDa bands in normal and AD brains. In serial extractions, there was a shift of dysferlin from soluble phase in high salt/Triton X-100 to the more insoluble SDS fraction in AD. Dysferlin is a new protein described in the AD brain that accumulates in association with neuritic plaques. In muscle, dysferlin plays a role in the repair of muscle membrane damage. The accumulation of dysferlin in the AD brain may be related to the inability of neurons to repair damage due to Aβ deposits accumulating in the AD brain

    High Resolution In Vivo Bioluminescent Imaging for the Study of Bacterial Tumour Targeting

    Get PDF
    The ability to track microbes in real time in vivo is of enormous value for preclinical investigations in infectious disease or gene therapy research. Bacteria present an attractive class of vector for cancer therapy, possessing a natural ability to grow preferentially within tumours following systemic administration. Bioluminescent Imaging (BLI) represents a powerful tool for use with bacteria engineered to express reporter genes such as lux. BLI is traditionally used as a 2D modality resulting in images that are limited in their ability to anatomically locate cell populations. Use of 3D diffuse optical tomography can localize the signals but still need to be combined with an anatomical imaging modality like micro-Computed Tomography (μCT) for interpretation

    Gene Promoter Evolution Targets the Center of the Human Protein Interaction Network

    Get PDF
    Assessing the contribution of promoters and coding sequences to gene evolution is an important step toward discovering the major genetic determinants of human evolution. Many specific examples have revealed the evolutionary importance of cis-regulatory regions. However, the relative contribution of regulatory and coding regions to the evolutionary process and whether systemic factors differentially influence their evolution remains unclear. To address these questions, we carried out an analysis at the genome scale to identify signatures of positive selection in human proximal promoters. Next, we examined whether genes with positively selected promoters (Prom+ genes) show systemic differences with respect to a set of genes with positively selected protein-coding regions (Cod+ genes). We found that the number of genes in each set was not significantly different (8.1% and 8.5%, respectively). Furthermore, a functional analysis showed that, in both cases, positive selection affects almost all biological processes and only a few genes of each group are located in enriched categories, indicating that promoters and coding regions are not evolutionarily specialized with respect to gene function. On the other hand, we show that the topology of the human protein network has a different influence on the molecular evolution of proximal promoters and coding regions. Notably, Prom+ genes have an unexpectedly high centrality when compared with a reference distribution (P = 0.008, for Eigenvalue centrality). Moreover, the frequency of Prom+ genes increases from the periphery to the center of the protein network (P = 0.02, for the logistic regression coefficient). This means that gene centrality does not constrain the evolution of proximal promoters, unlike the case with coding regions, and further indicates that the evolution of proximal promoters is more efficient in the center of the protein network than in the periphery. These results show that proximal promoters have had a systemic contribution to human evolution by increasing the participation of central genes in the evolutionary process

    Airships: A New Horizon for Science

    Get PDF
    The "Airships: A New Horizon for Science" study at the Keck Institute for Space Studies investigated the potential of a variety of airships currently operable or under development to serve as observatories and science instrumentation platforms for a range of space, atmospheric, and Earth science. The participants represent a diverse cross-section of the aerospace sector, NASA, and academia. Over the last two decades, there has been wide interest in developing a high altitude, stratospheric lighter-than-air (LTA) airship that could maneuver and remain in a desired geographic position (i.e., "station-keeping") for weeks, months or even years. Our study found considerable scientific value in both low altitude (< 40 kft) and high altitude (> 60 kft) airships across a wide spectrum of space, atmospheric, and Earth science programs. Over the course of the study period, we identified stratospheric tethered aerostats as a viable alternative to airships where station-keeping was valued over maneuverability. By opening up the sky and Earth's stratospheric horizon in affordable ways with long-term flexibility, airships allow us to push technology and science forward in a project-rich environment that complements existing space observatories as well as aircraft and high-altitude balloon missions.Comment: This low resolution version of the report is 8.6 MB. For the high resolution version see: http://kiss.caltech.edu/study/airship

    The Sorcerer II Global Ocean Sampling Expedition: Northwest Atlantic through Eastern Tropical Pacific

    Get PDF
    The world's oceans contain a complex mixture of micro-organisms that are for the most part, uncharacterized both genetically and biochemically. We report here a metagenomic study of the marine planktonic microbiota in which surface (mostly marine) water samples were analyzed as part of the Sorcerer II Global Ocean Sampling expedition. These samples, collected across a several-thousand km transect from the North Atlantic through the Panama Canal and ending in the South Pacific yielded an extensive dataset consisting of 7.7 million sequencing reads (6.3 billion bp). Though a few major microbial clades dominate the planktonic marine niche, the dataset contains great diversity with 85% of the assembled sequence and 57% of the unassembled data being unique at a 98% sequence identity cutoff. Using the metadata associated with each sample and sequencing library, we developed new comparative genomic and assembly methods. One comparative genomic method, termed “fragment recruitment,” addressed questions of genome structure, evolution, and taxonomic or phylogenetic diversity, as well as the biochemical diversity of genes and gene families. A second method, termed “extreme assembly,” made possible the assembly and reconstruction of large segments of abundant but clearly nonclonal organisms. Within all abundant populations analyzed, we found extensive intra-ribotype diversity in several forms: (1) extensive sequence variation within orthologous regions throughout a given genome; despite coverage of individual ribotypes approaching 500-fold, most individual sequencing reads are unique; (2) numerous changes in gene content some with direct adaptive implications; and (3) hypervariable genomic islands that are too variable to assemble. The intra-ribotype diversity is organized into genetically isolated populations that have overlapping but independent distributions, implying distinct environmental preference. We present novel methods for measuring the genomic similarity between metagenomic samples and show how they may be grouped into several community types. Specific functional adaptations can be identified both within individual ribotypes and across the entire community, including proteorhodopsin spectral tuning and the presence or absence of the phosphate-binding gene PstS
    corecore