8 research outputs found
Spitzer Infrared Spectrograph Observations of M, L, and T Dwarfs
We present the first mid-infrared spectra of brown dwarfs, together with
observations of a low-mass star. Our targets are the M3.5 dwarf GJ 1001A, the
L8 dwarf DENIS-P J0255-4700, and the T1/T6 binary system epsilon Indi Ba/Bb. As
expected, the mid-infrared spectral morphology of these objects changes rapidly
with spectral class due to the changes in atmospheric chemistry resulting from
their differing effective temperatures and atmospheric structures. By taking
advantage of the unprecedented sensitivity of the Infrared Spectrograph on the
Spitzer Space Telescope we have detected the 7.8 micron methane and 10 micron
ammonia bands for the first time in brown dwarf spectra.Comment: 4 pages, 2 figure
A Spitzer Infrared Spectrograph Spectral Sequence of M, L, and T Dwarfs
We present a low-resolution (R ≡ λ/Δλ ≈ 90), 5.5-38 μm spectral sequence of a sample of M, L, and T dwarfs obtained with the Infrared Spectrograph (IRS) on board the Spitzer Space Telescope. The spectra exhibit prominent absorption bands of H_2O at 6.27 μm, CH_4 at 7.65 μm, and NH_3 at 10.5 μm and are relatively featureless at λ ≳ 15 μm. Three spectral indices that measure the strengths of these bands are presented; H_2O absorption features are present throughout the MLT sequence, while the CH_4 and NH_3 bands first appear at roughly the L/T transition. Although the spectra are, in general, qualitatively well matched by synthetic spectra that include the formation of spatially homogeneous silicate and iron condensate clouds, the spectra of the mid-type L dwarfs show an unexpected flattening from roughly 9 to 11 μm. We hypothesize that this may be a result of a population of small silicate grains that are not predicted in the cloud models. The spectrum of the peculiar T6 dwarf 2MASS J0937+2931 is suppressed from 5.5 to 7.5 μm relative to typical T6 dwarfs and may be a consequence of its mildly metal-poor/high surface gravity atmosphere. Finally, we compute bolometric luminosities of a subsample of the M, L, and T dwarfs by combining the IRS spectra with previously published 0.6-4.1 μm spectra and find good agreement with the values of Golimowski et al., who use L'- and M'-band photometry to account for the flux emitted at λ > 2.5 μm
Masses, radii, and orbits of small Kepler planets : The transition from gaseous to rocky planets
We report on the masses, sizes, and orbits of the planets orbiting 22 Kepler stars. There are 49 planet candidates around these stars, including 42 detected through transits and 7 revealed by precise Doppler measurements of the host stars. Based on an analysis of the Kepler brightness measurements, along with high-resolution imaging and spectroscopy, Doppler spectroscopy, and (for 11 stars) asteroseismology, we establish low false-positive probabilities (FPPs) for all of the transiting planets (41 of 42 have an FPP under 1%), and we constrain their sizes and masses. Most of the transiting planets are smaller than three times the size of Earth. For 16 planets, the Doppler signal was securely detected, providing a direct measurement of the planet's mass. For the other 26 planets we provide either marginal mass measurements or upper limits to their masses and densities; in many cases we can rule out a rocky composition. We identify six planets with densities above 5 g cm-3, suggesting a mostly rocky interior for them. Indeed, the only planets that are compatible with a purely rocky composition are smaller than 2 R ⊕. Larger planets evidently contain a larger fraction of low-density material (H, He, and H2O).Peer reviewedFinal Accepted Versio
Masses, radii, and orbits of small Kepler planets: the transition from gaseous to rocky planets
We report on the masses, sizes, and orbits of the planets orbiting 22 Kepler stars. There are 49 planet candidates around these stars, including 42 detected through transits and 7 revealed by precise Doppler measurements of the host stars. Based on an analysis of the Kepler brightness measurements, along with high-resolution imaging and spectroscopy, Doppler spectroscopy, and (for 11 stars) asteroseismology, we establish low false-positive probabilities (FPPs) for all of the transiting planets (41 of 42 have an FPP under 1%), and we constrain their sizes and masses. Most of the transiting planets are smaller than three times the size of Earth. For 16 planets, the Doppler signal was securely detected, providing a direct measurement of the planet's mass. For the other 26 planets we provide either marginal mass measurements or upper limits to their masses and densities; in many cases we can rule out a rocky composition. We identify six planets with densities above 5 g cm-3, suggesting a mostly rocky interior for them. Indeed, the only planets that are compatible with a purely rocky composition are smaller than 2 R ⊕. Larger planets evidently contain a larger fraction of low-density material (H, He, and H2O)