204 research outputs found

    Anaplastic oligodendrogliomas with 1p19q codeletion have a proneural gene expression profile

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In high grade gliomas, 1p19q codeletion and <it>EGFR </it>amplification are mutually exclusive and predictive of dramatically different outcomes. We performed a microarray gene expression study of four high grade gliomas with 1p19q codeletion and nine with <it>EGFR </it>amplification, identified by CGH-array.</p> <p>Results</p> <p>The two groups of gliomas exhibited very different gene expression profiles and were consistently distinguished by unsupervised clustering analysis. One of the most striking differences was the expression of normal brain genes by oligodendrogliomas with 1p19q codeletion. These gliomas harbored a gene expression profile that partially resembled the gene expression of normal brain samples, whereas gliomas with <it>EGFR </it>amplification expressed many genes in common with glioblastoma cancer stem cells. The differences between the two types of gliomas and the expression of neuronal genes in gliomas with 1p19q codeletion were both validated in an independent series of 16 gliomas using real-time RT-PCR with a set of 22 genes differentiating the two groups of gliomas (<it>AKR1C3</it>, <it>ATOH8</it>, <it>BMP2</it>, <it>C20orf42</it>, <it>CCNB1</it>, <it>CDK2</it>, <it>CHI3L1</it>, <it>CTTNBP2</it>, <it>DCX, EGFR, GALNT13, GBP1, IGFBP2, IQGAP1, L1CAM, NCAM1, NOG, OLIG2, PDPN, PLAT, POSTN, RNF135</it>). Immunohistochemical study of the most differentially expressed neuronal gene, alpha-internexin, clearly differentiated the two groups of gliomas, with 1p19q codeletion gliomas showing specific staining in tumor cells.</p> <p>Conclusion</p> <p>These findings provide evidence for neuronal differentiation in oligodendrogliomas with 1p19q codeletion and support the hypothesis that the cell of origin for gliomas with 1p19q codeletion could be a bi-potential progenitor cell, able to give rise to both neurons and oligodendrocytes.</p

    DGKI Methylation Status Modulates the Prognostic Value of MGMT in Glioblastoma Patients Treated with Combined Radio-Chemotherapy with Temozolomide

    No full text
    International audienceBackgroundConsistently reported prognostic factors for glioblastoma (GBM) are age, extent of surgery, performance status, IDH1 mutational status, and MGMT promoter methylation status. We aimed to integrate biological and clinical prognostic factors into a nomogram intended to predict the survival time of an individual GBM patient treated with a standard regimen. In a previous study we showed that the methylation status of the DGKI promoter identified patients with MGMT-methylated tumors that responded poorly to the standard regimen. We further evaluated the potential prognostic value of DGKI methylation status.Methods399 patients with newly diagnosed GBM and treated with a standard regimen were retrospectively included in this study. Survival modelling was performed on two patient populations: intention-to-treat population of all included patients (population 1) and MGMT-methylated patients (population 2). Cox proportional hazard models were fitted to identify the main prognostic factors. A nomogram was developed for population 1. The prognostic value of DGKI promoter methylation status was evaluated on population 1 and population 2.ResultsThe nomogram-based stratification of the cohort identified two risk groups (high/low) with significantly different median survival. We validated the prognostic value of DGKI methylation status for MGMT-methylated patients. We also demonstrated that the DGKI methylation status identified 22% of poorly responding patients in the low-risk group defined by the nomogram.ConclusionsOur results improve the conventional MGMT stratification of GBM patients receiving standard treatment. These results could help the interpretation of published or ongoing clinical trial outcomes and refine patient recruitment in the future

    Long-term clinical outcome of paraneoplastic cerebellar degeneration and anti-Yo antibodies

    Get PDF
    The outcome of 34 women with anti-Yo-associated paraneoplastic cerebellar degeneration was reviewed. Three patients had not developed cancer after more than 4 years of follow-up. The only independent predictor for survival was the type of associated tumor (risk ratio, 1.79; 95% CI, 1.02 to 3.12). Median survival was 100 months for patients with breast cancer and 22 for those with gynecologic cancer. Although paraneoplastic cerebellar degeneration leads to the diagnosis of cancer in 63% of the patients, cancer progression was the cause of death in 52%

    ASPM-associated stem cell proliferation is involved in malignant progression of gliomas and constitutes an attractive therapeutic target

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>ASPM (<it>Abnormal Spindle-like Microcephaly associated</it>) over-expression was recently implicated in the development of malignant gliomas.</p> <p>Results</p> <p>To better characterize the involvement of ASPM in gliomas, we investigated the mRNA expression in 175 samples, including 8 WHO Grade II, 75 WHO Grade III and 92 WHO Grade IV tumors. <it>Aspm </it>expression was strongly correlated with tumor grade and increased at recurrence when compared to the initial lesion, whatever the initial grade of the primary tumor. ASPM expression also increased over serial passages in gliomaspheres <it>in vitro </it>and in mouse xenografts <it>in vivo</it>. Lentivirus-mediated shRNA silencing of ASPM resulted in dramatic proliferation arrest and cell death in two different gliomasphere models.</p> <p>Conclusion</p> <p>These data suggest that ASPM is involved in the malignant progression of gliomas, possibly through expansion of a cancer stem cell compartment, and is an attractive therapeutic target in glioblastoma multiforme.</p

    Changis-sur-Marne – Le Dessus de la Chaussée, les Pétreaux (secteur 5)

    Get PDF
    Le cinquième secteur de Changis-sur-Marne, Le Dessus de la Chaussée-les Pétreaux, a fait l’objet d’une évaluation archéologique à la fin du printemps 1997 suivie d’une fouille de trois mois encore en cours à la date où cette notice est écrite.Le décapage intégral des 2,5 ha du site a fait apparaître une occupation plus dense que les précédentes, notamment dans la partie basse du terrain la plus proche de la Marne, où se confirme l’installation successive des habitats ruraux pré et protohisto..

    A biobank of pediatric patient-derived-xenograft models in cancer precision medicine trial MAPPYACTS for relapsed and refractory tumors

    Get PDF
    Pediatric patients with recurrent and refractory cancers are in most need for new treatments. This study developed patient-derived-xenograft (PDX) models within the European MAPPYACTS cancer precision medicine trial (NCT02613962). To date, 131 PDX models were established following heterotopical and/or orthotopical implantation in immunocompromised mice: 76 sarcomas, 25 other solid tumors, 12 central nervous system tumors, 15 acute leukemias, and 3 lymphomas. PDX establishment rate was 43%. Histology, whole exome and RNA sequencing revealed a high concordance with the primary patient's tumor profile, human leukocyte-antigen characteristics and specific metabolic pathway signatures. A detailed patient molecular characterization, including specific mutations prioritized in the clinical molecular tumor boards are provided. Ninety models were shared with the IMI2 ITCC Pediatric Preclinical Proof-of-concept Platform (IMI2 ITCC-P4) for further exploitation. This PDX biobank of unique recurrent childhood cancers provides an essential support for basic and translational research and treatments development in advanced pediatric malignancies

    Genomic aberrations associated with outcome in anaplastic oligodendroglial tumors treated within the EORTC phase III trial 26951

    Get PDF
    Despite similar morphological aspects, anaplastic oligodendroglial tumors (AOTs) form a heterogeneous clinical subgroup of gliomas. The chromosome arms 1p/19q codeletion has been shown to be a relevant biomarker in AOTs and to be perfectly exclusive from EGFR amplification in gliomas. To identify new genomic regions associated with prognosis, 60 AOTs from the EORTC trial 26951 were analyzed retrospectively using BAC-array-based comparative genomic hybridization. The data were processed using a binary tree method. Thirty-three BACs with prognostic value were identified distinguishing four genomic subgroups of AOTs with different prognosis (p < 0.0001). Type I tumors (25%) were characterized by: (1) an EGFR amplification, (2) a poor prognosis, (3) a higher rate of necrosis, and (4) an older age of patients. Type II tumors (21.7%) had: (1) loss of prognostic BACs located on 1p tightly associated with 19q deletion, (2) a longer survival, (3) an oligodendroglioma phenotype, and (4) a frontal location in brain. Type III AOTs (11.7%) exhibited: (1) a deletion of prognostic BACs located on 21q, and (2) a short survival. Finally, type IV tumors (41.7%) had different genomic patterns and prognosis than type I, II and III AOTs. Multivariate analysis showed that genomic type provides additional prognostic data to clinical, imaging and pathological features. Similar results were obtained in the cohort of 45 centrally reviewed–validated cases of AOTs. Whole genome analysis appears useful to screen the numerous genomic abnormalities observed in AOTs and to propose new biomarkers particularly in the non-1p/19q codeleted AOTs

    Improving diagnosis and management of primary brain tumors

    No full text
    International audienceImproving the diagnosis and management of gliomas and other primary brain tumors such as primary central nervous system (CNS) lymphoma (PCNSL) are clearly the key challenges of the neuro-oncology specialty. In the present section of Current Opinion in Neurology, leading experts update our knowledge on these issues and underline their practical significance
    corecore