99 research outputs found

    Validation of an ambient system for the measurement of gait parameters

    Get PDF
    Fall risk in elderly people is usually assessed using clinical tests. These tests consist in a subjective evaluation of gait performed by healthcare professionals, most of the time shortly after the first fall occurrence. We propose to complement this one-time, subjective evaluation, by a more quantitative analysis of the gait pattern using a Microsoft Kinect. To evaluate the potential of the Kinect sensor for such a quantitative gait analysis, we benchmarked its performance against that of a gold-standard motion capture system, namely the OptiTrack. The “Kinect” analysis relied on a home-made algorithm specifically developed for this sensor, whereas the OptiTrack analysis relied on the “built-in” OptiTrack algorithm. We measured different gait parameters as step length, step duration, cadence, and gait speed in twenty-five subjects, and compared the results respectively provided by the Kinect and OptiTrack systems. These comparisons were performed using Bland-Altman plot (95% bias and limits of agreement), percentage error, Spearman’s correlation coefficient, concordance correlation coefficient and intra-class correlation. The agreement between the measurements made with the two motion capture systems was very high, demonstrating that associated with the right algorithm, the Kinect is a very reliable and valuable tool to analyze gait. Importantly, the measured spatio-temporal parameters varied significantly between age groups, step length and gait speed proving the most effective discriminating parameters. Kinect-monitoring and quantitative gait pattern analysis could therefore be routinely used to complete subjective clinical evaluation in order to improve fall risk assessment during rehabilitation

    Automating the timed up and go test using a depth camera

    Get PDF
    Fall prevention is a human, economic and social issue. The Timed Up and Go (TUG) test is widely used to identify individuals with a high fall risk. However, this test has been criticized because its “diagnostic” is too dependent on the conditions in which it is performed and on the healthcare professionals running it. We used the Microsoft Kinect ambient sensor to automate this test in order to reduce the subjectivity of outcome measures and to provide additional information about patient performance. Each phase of the TUG test was automatically identified from the depth images of the Kinect. Our algorithms accurately measured and assessed the elements usually measured by healthcare professionals. Specifically, average TUG test durations provided by our system differed by only 0.001 s from those measured by clinicians. In addition, our system automatically extracted several additional parameters that allowed us to accurately discriminate low and high fall risk individuals. These additional parameters notably related to the gait and turn pattern, the sitting position and the duration of each phase. Coupling our algorithms to the Kinect ambient sensor can therefore reliably be used to automate the TUG test and perform a more objective, robust and detailed assessment of fall risk

    The choice of statistical methods for comparisons of dosimetric data in radiotherapy

    Get PDF
    Purpose: Novel irradiation techniques are continuously introduced in radiotherapy to optimize the accuracy, the security and the clinical outcome of treatments. These changes could raise the question of discontinuity in dosimetric presentation and the subsequent need for practice adjustments in case of significant modifications. This study proposes a comprehensive approach to compare different techniques and tests whether their respective dose calculation algorithms give rise to statistically significant differences in the treatment doses for the patient. Methods: Statistical investigation principles are presented in the framework of a clinical example based on 62 fields of radiotherapy for lung cancer. The delivered doses in monitor units were calculated using three different dose calculation methods: the reference method accounts the dose without tissues density corrections using Pencil Beam Convolution (PBC) algorithm, whereas new methods calculate the dose with tissues density correction for 1D and 3D using Modified Batho (MB) method and Equivalent Tissue air ratio (ETAR) method, respectively. The normality of the data and the homogeneity of variance between groups were tested using Shapiro-Wilks and Levene test, respectively, then non-parametric statistical tests were performed. Specifically, the dose means estimated by the different calculation methods were compared using Friedman’s test and Wilcoxon signed-rank test. In addition, the correlation between the doses calculated by the three methods was assessed using Spearman’s rank and Kendall’s rank tests Results: The Friedman’s test showed a significant effect on the calculation method for the delivered dose of lung cancer patients (p 0.001). The density correction methods yielded to lower doses as compared to PBC by on average (−5 ± 4.4 SD) for MB and (−4.7 ± 5 SD) for ETAR. Post-hoc Wilcoxon signed-rank test of paired comparisons indicated that the delivered dose was significantly reduced using density-corrected methods as compared to the reference method. Spearman’s and Kendall’s rank tests indicated a positive correlation between the doses calculated with the different methods. Conclusion: This paper illustrates and justifies the use of statistical tests and graphical representations for dosimetric comparisons in radiotherapy. The statistical analysis shows the significance of dose differences resulting from two or more techniques in radiotherapy

    Reaching with the sixth sense: Vestibular contributions to voluntary motor control in the human right parietal cortex

    Get PDF
    The vestibular system constitutes the silent sixth sense: It automatically triggers a variety of vital reflexes to maintain postural and visual stability. Beyond their role in reflexive behavior, vestibular afferents contribute to several perceptual and cognitive functions and also support voluntary control of movements by complementing the other senses to accomplish the movement goal. Investigations into the neural correlates of vestibular contribution to voluntary action in humans are challenging and have progressed far less than research on corresponding visual and proprioceptive involvement. Here, we demonstrate for the first time with event-related TMS that the posterior part of the right medial intraparietal sulcus processes vestibular signals during a goal-directed reaching task with the dominant right hand. This finding suggests a qualitative difference between the processing of vestibular vs. visual and proprioceptive signals for controlling voluntary movements, which are pre-dominantly processed in the left posterior parietal cortex. Furthermore, this study reveals a neural pathway for vestibular input that might be distinct from the processing for reflexive or cognitive functions, and opens a window into their investigation in humans

    Bioceramic fabrics improve quiet standing posture and handstand stability in expert gymnasts

    Get PDF
    Bioceramic fabrics have been claimed to improve blood circulation, thermoregulation and muscle relaxation, thereby also improving muscular activity. Here we tested whether bioceramic fabrics have an effect on postural control and contribute to improve postural stability. In Experiment 1, we tested whether bioceramic fabrics contribute to reduce body-sway when maintaining standard standing posture. In Experiment 2, we measured the effect of bioceramic fabrics on body-sway when maintaining a more instable posture, namely a handstand hold. For both experiments, postural oscillations were measured using a force platform with four strain gauges that recorded the displacements of the center of pressure (CoP) in the horizontal plane. In half of the trials, the participants wore a full-body second skin suit containing a bioceramic layer. In the other half of the trials, they wore a ‘placebo’ second skin suit that had the same cut, appearance and elasticity as the bioceramic suit but did not contain the bioceramic layer. In both experiments, the surface of displacement of the CoP was significantly smaller when participants were wearing the bioceramic suit than when they were wearing the placebo suit. The results suggest that bioceramic fabrics do have an effect on postural control and improve postural stability

    Asymmetric saccade reaction times to smooth pursuit

    Get PDF
    Before initiating a saccade to a moving target, the brain must take into account the target’s eccentricity as well as its movement direction and speed. We tested how the kinematic characteristics of the target influence the time course of this oculomotor response. Participants performed a step-ramp task in which the target object stepped from a central to an eccentric position and moved at constant velocity either to the fixation position (foveopetal) or further to the periphery (foveofugal). The step size and target speed were varied. Of particular interest were trials that exhibited an initial saccade prior to a smooth pursuit eye movement. Measured saccade reaction times were longer in the foveopetal than in the foveofugal condition. In the foveopetal (but not the foveofugal) condition, the occurrence of an initial saccade, its reaction time as well as the strength of the pre-saccadic pursuit response depended on both the target’s speed and the step size. A common explanation for these results may be found in the neural mechanisms that select between oculomotor response alternatives, i.e., a saccadic or smooth response

    The bootstrap method to improve statistical analysis of dosimetric data for radiotherapy outcomes

    Get PDF
    Purpose: The purpose of this study is to validate a new technique in radiotherapy, the medical physicist needs to evaluate the dosimetric benefit and the risk of toxicity before integrating it in the clinical use.Methods: We validate a sound decision tool based on bootstrap method to help the radio oncologist and the medical physicist to usefully analyze the dosimetric data obtained from small-sized samples, with few patients. Statistical investigation principles are presented in the framework of a clinical example based on 36 patients with 6 different cancer sites treated with radiotherapy. For each patient, two treatment plans were generated. In plan 1, the dose was calculated using Modified Batho's (MB) density correction method integrated with pencil beam convolution (PBC) as type (a) algorithm. In plan 2, the dose was calculated using Anisotropic Analytical Algorithm (AAA) as type (b) algorithm. The delivered doses in monitor units (MUs) were compared using the two plans. Then, the bootstrap method was applied to the original data set to assess the dose differences and evaluate the impact of sample size on the 95% confidence interval (95%.CI). Shapiro-Wilks and Wilcoxon signed-rank tests were used to assess the normality of the data and determine the p-value. In addition, Spearman’s rank test was used to calculate the correlation coefficient between the doses calculated with both algorithms.Results: A significant difference was observed between AAA and MB for all tested radiation sites. Spearman’s test indicated a good correlation between the doses calculated with both methods. The bootstrap simulation with 1000 random samplings can be used for small populations with n = 10 and provides a true estimation.Conclusion: one must be cautious when implementing this method for radiotherapy: the data should be representative of the real variations of the cases and the cases should be as homogeneous as possible to avoid bias of over/under estimation of the results

    Contributions of the PPC to online control of visually guided reaching movements assessed with fMRI-Guided TMS

    Get PDF
    The posterior parietal cortex (PPC) plays an important role in controlling voluntary movements by continuously integrating sensory information about body state and the environment. We tested which subregions of the PPC contribute to the processing of target- and body-related visual information while reaching for an object, using a reaching paradigm with 2 types of visual perturbation: displacement of the visual target and displacement of the visual feedback about the hand position. Initially, functional magnetic resonance imaging (fMRI) was used to localize putative target areas involved in online corrections of movements in response to perturbations. The causal contribution of these areas to online correction was tested in subsequent neuronavigated transcranial magnetic stimulation (TMS) experiments. Robust TMS effects occurred at distinct anatomical sites along the anterior intraparietal sulcus (aIPS) and the anterior part of the supramarginal gyrus for both perturbations. TMS over neighboring sites did not affect online control. Our results support the hypothesis that the aIPS is more generally involved in visually guided control of movements, independent of body effectors and nature of the visual information. Furthermore, they suggest that the human network of PPC subregions controlling goal-directed visuomotor processes extends more inferiorly than previously thought. Our results also point toward a good spatial specificity of the TMS effects. © 2010 The Author

    3D feedback and observation for motor learning: Application to the roundoff movement in gymnastics

    Get PDF
    In this paper, we assessed the efficacy of different types of visual information for improving the execution of the roundoff movement in gymnastics. Specifically, two types of 3D feedback were compared to a 3D visualization only displaying the movement of the expert (observation) as well as to a more ‘traditional’ video observation. The improvement in movement execution was measured using different methods, namely subjective evaluations performed by official judges, and more ’quantitative appraisals based on time series analyses. Video demonstration providing information about the expert and 3D feedback (i.e., using 3D representation of the movement in monoscopic vision) combining information about the movement of the expert and the movement of the learner were the two types of feedback giving rise to the best improvement of movement execution, as subjectively evaluated by judges. Much less conclusive results were obtained when assessing movement execution using quantification methods based on time series analysis. Correlation analyses showed that the subjective evaluation performed by the judges can hardly be predicted/ explained by the ‘more objective’ results of time series analyses
    • 

    corecore