56 research outputs found
Impact of Drought and Land – Use Changes on Surface – Water Quality and Quantity: The Sahelian Paradox
International audienceAfrique de l'Ouest a connu des conditions de sécheresse depuis la fin des années 1960. Cette tendance a été particulièrement évident dans le Sahel, mais semble avoir atténué dans la dernière décennie dans les régions orientales et centrales de cette région. D'autre part, la pluviométrie annuelle reste très faible dans la partie ouest du Sahel [ 1 ]. Une diminution correspondante a également été observé dans le débit moyen annuel des fleuves Sénégal et Niger, qui sont le plus grand dans la région et principalement alimenté par l'eau provenant de régions tropicales humides. Toutefois, le pourcentage de diminution du débit annuel moyen était presque deux fois plus grande que la diminution des précipitations [ 2 ] pour la période 1970-2010. Des tendances similaires ont été observées sur des réseaux hydrographiques plus petits. En revanche, même si le Sahel et la plupart de l'Afrique de l'Ouest ont connu la sécheresse aussi importante au cours des 40 dernières années, les coefficients de ruissellement et des débits d'eau ont augmenté dans la plupart des régions du Sahel. Ce phénomène a été appelé «Le Sahel Paradox" après l'augmentation de la nappe phréatique au Niger depuis les années 1960, a été nommé le paradoxe de Niamey et attribués à des changements importants dans l'utilisation des terres. Le les (Afrique multidisciplinaire de la mousson d'analyse) programmes AMMA HAPEX-Sahel (hydrologique et Expérience atmosphérique pilote) et ont fourni, parmi de nombreux résultats complets, les mesures de valeur portant sur les variations spatiales et temporelles de la teneur en eau du sol sahélienne ainsi que de l'infiltration de l'eau à travers les couches profondes du sol de la zone non saturée. Le but de ce chapitre est de fournir un aperçu du comportement hydrologique en Afrique de l'Ouest basée sur le point, locale, méso et échelles régionales observations
Dynamique Hydro-Erosive Actuelle Des Bassins Versants Endoreiques De La Region De Niamey (Sud-Ouest Du Niger)
La généralisation du ravinement et la baisse de la productivité des terres sont quelques-unes des principales contraintes qui assaillent l’utilisation des sols au Sahel. Pour gérer efficacement ces sols, une évaluation des processus hydro-érosifs est nécessaire. Ce travail a ainsi pour objectif d’analyser la dynamique hydro-érosive sur un site expérimental installé depuis 2004 dans la région de Niamey (Niger). Sur ce site, le dispositif de mesure est composé de huit parcelles de mesures de ruissellement et d’érosion, des stations hydrométriques à l’exutoire des deux bassins versants endoréiques et de plusieurs piquets destinés aux suivis morpho-dynamiques des ravines. Après une décennie d’observation, les ruissellements mesurés sur les parcelles se caractérisent par une dynamique saisonnière croissante sur les surfaces encroûtées (croûtes biologique et d’érosion) et décroissante sur les surfaces cultivées. Le coefficient de ruissellement varie de 5 % sur la surface cultivée à 58 % sur la croûte d’érosion. Au cours des 10 années de mesure, ce coefficient a connu une forte croissance en particulier sur la jachère (+ 80 %) et sur la surface cultivée (+ 300 %), traduisant ainsi la dégradation des sols. A l’échelle des bassins versants, l’augmentation du coefficient de ruissellement s’accompagne d’une érosion aréolaire qui décape le sol à une vitesse moyenne de 5 mm/an et d’une érosion linéaire active, de l’ordre de 4 m3/an au niveau des ravines suivies. Les transferts sédimentaires qui en résultent agissent sur le fonctionnement morpho-sédimentaire des cours d’eau. Des aménagements antiérosifs sont nécessaires pour dissiper les processus hydro-érosifs et préserver les services écosystémiques des sols des bassins.
Widespread gullying and the declining land productivity are some of the main constraints plaguing land use in the Sahel. In order to effectively manage these soils, it has become necessary to assess the hydro-erosive processes. The current study, thus, aims at analyzing the hydro-erosion dynamics on an experimental site installed since 2004 in the Niamey region (Niger Republic). On this site, the measurement device is made up of eight runoff and erosion measurement plots, hydrometric stations at the outlet of the two endorheic watersheds and several stakes intended for morpho-dynamic monitoring of the gullies. After a decade of observation, the runoff measured on the plots is characterized by an increasing seasonal dynamic on encrusted surfaces (biological and erosion crusts) and a decreasing one on cultivated surfaces. The runoff coefficient varies from 5% on the cultivated area to 58% on the erosion crust. Over the 10 years of measurement, this coefficient has greatly increased, especially on the fallow (+ 80%) and on cultivated area (+ 300%); this increase consequently reflects soil degradation. At the watershed scale, the increase in the runoff coefficient is accompanied by area erosion (or the erosion of the area out of the basin) which strikes the soil at an average speed of 5 mm/year and active linear erosion measuring 4 m3/year as observed at the monitored (the ongoing investigated) gullies. The resulting sediment transfers act on the morpho-sedimentary functioning of rivers. Anti-erosion facilities are necessary to dissipate the hydro-erosive processes and preserve the ecosystem services of the soil in the basin
Evolution of Surface Hydrology in the Sahelo-Sudanian Strip: An Updated Review
In the West African Sahel, two paradoxical hydrological behaviors have occurred during the last five decades. The first paradox was observed during the 1968–1990s ‘Great Drought’ period, during which runoff significantly increased. The second paradox appeared during the subsequent period of rainfall recovery (i.e., since the 1990s), during which the runoff coefficient continued to increase despite the general re-greening of the Sahel. This paper reviews and synthesizes the literature on the drivers of these paradoxical behaviors, focusing on recent works in the West African Sahelo/Sudanian strip, and upscaling the hydrological processes through an analysis of recent data from two representative areas of this region. This paper helps better determine the respective roles played by Land Use/Land Cover Changes (LULCC), the evolution of rainfall intensity and the occurrence of extreme rainfall events in these hydrological paradoxes. Both the literature review and recent data converge in indicating that the first Sahelian hydrological paradox was mostly driven by LULCC, while the second paradox has been caused by both LULCC and climate evolution, mainly the recent increase in rainfall intensity
Caractérisation hydrodynamique du sol in situ par infiltrométrie à disques : analyse critique des régimes pseudo-permanents, méthodes transitoires et cas des sols encroutés
The work presented here is related to the in situ hydrodynamic characterization of near-saturated soils using tension disc infiltrometers. The study is organized in three parts. The first part reviews existing methods based on the analysis of steady state of axisymmetric infiltration using Wooding's equation. It is shown that techniques which combine information from measurements at a range of surface matric potentials are the most stable and are not limited to quasilinear soils. The second part shows how, in practice, to make use of a simple equation for transient axisymmetric flow to determine capillary sorptivity and hydraulic conductivity without the attainment of steady conditions. A new method for determining sorptivity during the early stages is proposed taking into account the sand contact layer. Several methods are then proposed for estimating unsaturated conductivity, which are numerically tested and compared with classical approaches. It is shown that, for most field situations, the influences of gravity and lateral capillary flow on infiltration are of a similar order of magnitude, which enables both sorptivity and conductivity to be estimated. One of the consequences of the analysis is the proposal of a new time scale for disc infiltrometers that takes account of both gravitational and geometric effects. The third part concerns crusted soils, for which classical methods fail. The use of a minitensiometer coupled with the infiltrometer allows differentiation between infiltration into the crust and into the underlying soil. Using this information, the hydraulic conductivity of the crust is estimated from sorptivity measurements. Values obtained in this way were validated by comparing measured values of runoff with predictions using a two-Iayer infiltration model based on the assumptions of Green and Ampt. It is shown that crusts around one centimeter thick have a large impact on the amount of runoff.Le travail présenté dans ce mémoire est consacré à la caractérisation hydrodynamique in situ des sols, au voisinage de la saturation, par l'utilisation des infiltromètres à disques à succion contrôlée. L'étude s'articule autour de trois parties. La première partie fait l'inventaire des méthodes existantes fondées sur l'analyse des régimes permanents d'infiltration axisymétrique appliquée à la solution de Wooding. On montre que celle reposant sur l'application d'une série de potentiels imposés est la plus stable et n'est pas limitée aux sols quasi-linéaires. La deuxième partie montre comment exploiter, dans la pratique, une équation simple du régime transitoire axisymétrique pour déterminer la sorptivité capillaire et la conductivité hydraulique des sols non saturés sans atteindre le régime permanent. Dans cet objectif, une nouvelle méthode de détermination de la sorptivité aux temps courts est proposée, prenant en compte les effets de la couche de sable de contact. Diverses méthodes sont ensuite proposées, testées numériquement et comparées avec l'approche classique, pour l'estimation de la conductivité. On montre que les ordres de grandeur comparables entre effets gravitaire et capillaire latéral sur l'écoulement, pour la plupart des sols "en place", autorisent la détermination à la fois de la sorptivité et de la conductivité. Une nouvelle échelle de temps caractéristique, prenant en comple la combinaison de ces deux effets, peut être calculée pour les infiltromètres à disque. La troisième partie traite le cas des sols encroûtés pour lesquels les méthodes classiques ne peuvent être appliquées. L'utilisation d'un minitensiomètre couplé avec l'infiltromètre permet de discriminer les phases d'infiltration dans la croûte et dans le sol sous-jacent. La conductivité hydraulique de la croûte est ensuite estimée à partir d'une série de mesures de sorptivité. Les valeurs ainsi obtenues sont validées, par comparaison de mesures de ruissellement. avec les prédictions fournies par un modèle d'infiltration bi-couche reposant sur le principe de Green et Ampt. On montre l'impact considérable de la présence de croûtes d'épaisseur centimétrique sur les volumes ruisselés
Etude expérimentale et numérique du ruissellement de surface (effets des variations d'intensité de la pluie)
A travers une approche transversale, une étude de l'effet de la dynamique des pluies et de l'effet de la longueur de versant sur le ruissellement est réalisée à l'échelle de la parcelle. Dans cet objectif, une parcelle de vigne en Ardèche est instrumentée afin de mener à bien des expériences de ruissellement sous pluies simulées et sous pluies naturelles. Des simulations de pluie en laboratoire complètent ces expériences à l'aide d'un milieu poreux artificiel reproductible constitué de briques de céramique. Une modélisation du ruissellement est ensuite effectuée par l'utilisation d'un modèle distribué à base physique (PSEM_2D) et par la création d'un modèle conceptuel constitué d'un assemblage de cuvettes de profil triangulaire. En régime permanent, les résultats des simulations de pluie sur le terrain montrent que l'intensité de ruissellement est identique pour toutes les longueurs collectées. La responsabilité du régime transitoire dans la non-proportionnalité du volume ruisselé avec la longueur de versant est mise en évidence. Une augmentation de l'infiltration en régime permanent avec l'intensité de pluie est observée sur le terrain et en laboratoire. En présence de microtopographie, les résultats de la modélisation montrent qu'une augmentation de la conductivité hydraulique avec l'altitude du point considéré peut expliquer la gamme de variation de l'infiltration observée sur le terrain. Une pluie intermittente génère plus de ruissellement qu'une pluie continue de même intensité moyenne selon les expériences sous pluies simulées. Cet effet est cependant fortement atténué aux fortes intensités de par l'augmentation de l'infiltration avec l'intensité de pluie et de par l'infiltration de la détention superficielle entre deux averses (estimée par le déficit de ruissellement par intermittence entre deux pluies intermittente et continue de même cumul). Cette observation valide l'utilisation d'un coefficient de ruissellement indépendamment du hyétogramme dans les modèles.Through a cross-disciplinary approach, a study of the rain-dynamics and hillslope-length effects on runoff was carried out at plot scale. To achieve this, a vineyard plot in Ardèche was instrumented in order to implement runoff experiments under simulated and natural rainfall. Laboratory rainfall simulations completed this experimental ensemble via a reproducible artificial porous medium made of ceramic bricks. A distributed physically based model (PSEM_2D) was utilized and a conceptual model constituted of triangular section basins was created to reproduce the observed runoff. In steady regime, field rainfall simulations showed that runoff intensity do not depend on collected slope length. The responsibility of transitional regime on the non proportionality of runoff volume with slope length is put forward. Steady regime infiltration increase with rainfall intensity was observed in the field and in the laboratory. With microtopography, modeling results showed that a punctual hydraulic conductivity increase with elevation could explain the observed infiltration variation range in the field. An intermittent rainfall creates more runoff than a continuous rainfall of the same mean intensity as the simulated rainfall experiences showed. However, this effect was softened for heavy intensities due to the infiltration increase with rainfall intensity and to the superficial detention infiltrated between two flushes (estimated by the intermittent runoff deficit between intermittent and continuous rainfalls of same amount). This observation reinforces the use of hyetogram-independent runoff coefficients in hydrological models.GRENOBLE1-BU Sciences (384212103) / SudocSudocFranceF
Saturated hydraulic conductivity spatialization strategy to model recharge and hydrogeological transfers on an industrial site in France
International audiencePollutant transfers in the critical zone is an issue for decades both because of complex physico-chemical interactions in the porous media and because of the emergence of new materials/molecules rejected in the environment for which rules are not ready. The study presented here is part of a research project which aimed to predict transfers and residence time of pollutants in the critical zone including the Unsaturated Zone (UZ), and in aquifers on the CEA Cadarache site (France). This site benefits from a large instrumentation for decades to survey both the water dynamic and quality in the aquifers below the industrial facilities. One of the remaining challenges is to study the distributed recharge in the UZ. In situ measurements of saturated hydraulic conductivity Ks are often time-consuming, but also costly to implement at a catchment scale. To overcome this difficulty, an approach using Pedotransfer Functions (PTFs) is possible in order to spatialize this parameter of the UZ (Nasta et al., 2021; Weihermüller et al., 2021). The main objective of the study is to evaluate a spatialization strategy of Ks values using PTFs calibrated from an intensive in situ measurement campaign. A total of 48 measurement points were selected on the study site, covering an area of around 900 hectares. The points were chosen to represent the different types of geological formations at the outcrop as well as the different types of land cover on the site. For all those locations, in situ hydraulic conductivity measurements were carried out with a disc infiltrometer, using the multi-potential method (Vandervaere, 1995), together with physico-chemical analyses of the surface soils. The results obtained show that for most of the measurement points, a fairly clear break in the slope of the exponential function K(h) appears for potentials h around -30 / -20 mm. The estimate of the value of Ks is chosen as being the value of K(h) obtained for the last value of potential h = - 5 mm, considering that saturation has been reached. On site, Ks varies from 20 to 410 mm/h. Several PTFs for estimating Ks were selected (Rawls & Brakensiek, 1985, Wösten et al., 1999, Weynants et al., 2009, Szabó et al., 2021, Rosetta (Schaap et al., 2001; Zhang & Schaap, 2017)). The study will help us to identify some geological or land cover drivers for Ks ranges and to select which PTFs are able to represent such a variability
Effect of rainfall and tillage direction on the evolution of surface crusts, soil hydraulic properties and runoff generation for a sandy loam soil
International audienceThe study was aimed at evaluating the effect of rainfall and tillage-induced soil surface characteristics on infiltration and runoff on a 2.8 ha catchment located in the central region of Senegal. This was done by simulating 30 min rain storms applied at a constant rate of about 70 mm h−1, on 10 runoff micro-plots of 1 m2, five being freshly harrowed perpendicularly to the slope and five along the slope (1%) of the catchment. Runoff was automatically recorded at the outlet of each plot. Hydraulic properties such as capillary sorptivity and hydraulic conductivity of the sandy loam soil close to saturation were determined by running 48 infiltration tests with a tension disc infiltrometer. That allowed the calculation of a mean characteristic pore size hydraulically active and a time to ponding. Superficial water storage capacity was estimated using data collected with an electronic relief meter. Because the soil was subject to surface crusting, crust-types as well as their spatial distribution within micro-plots and their evolution with time were identified and monitored by taking photographs at different times after tillage. The results showed that the surface crust-types as well as their tillage dependent dynamics greatly explain the decrease of hydraulic conductivity and sorptivity as the cumulative rainfall since tillage increases. The exponential decaying rates were found to be significantly greater for the soil harrowed along the slope (where the runoff crust-type covers more than 60% of the surface after 140 mm of rain) than across to the slope (where crusts are mainly of structural (60%) and erosion (40%) types). That makes ponding time smaller and runoff more important. Also it was shown that soil hydraulic properties after about 160 mm of rain were close to those of untilled plot not submitted to any rain. That indicates that the effects of tillage are short lived
Saturated hydraulic conductivity spatialization strategy to model recharge and hydrogeological transfers on an industrial site in France
International audiencePollutant transfers in the critical zone is an issue for decades both because of complex physico-chemical interactions in the porous media and because of the emergence of new materials/molecules rejected in the environment for which rules are not ready. The study presented here is part of a research project which aimed to predict transfers and residence time of pollutants in the critical zone including the Unsaturated Zone (UZ), and in aquifers on the CEA Cadarache site (France). This site benefits from a large instrumentation for decades to survey both the water dynamic and quality in the aquifers below the industrial facilities. One of the remaining challenges is to study the distributed recharge in the UZ. In situ measurements of saturated hydraulic conductivity Ks are often time-consuming, but also costly to implement at a catchment scale. To overcome this difficulty, an approach using Pedotransfer Functions (PTFs) is possible in order to spatialize this parameter of the UZ (Nasta et al., 2021; Weihermüller et al., 2021). The main objective of the study is to evaluate a spatialization strategy of Ks values using PTFs calibrated from an intensive in situ measurement campaign. A total of 48 measurement points were selected on the study site, covering an area of around 900 hectares. The points were chosen to represent the different types of geological formations at the outcrop as well as the different types of land cover on the site. For all those locations, in situ hydraulic conductivity measurements were carried out with a disc infiltrometer, using the multi-potential method (Vandervaere, 1995), together with physico-chemical analyses of the surface soils. The results obtained show that for most of the measurement points, a fairly clear break in the slope of the exponential function K(h) appears for potentials h around -30 / -20 mm. The estimate of the value of Ks is chosen as being the value of K(h) obtained for the last value of potential h = - 5 mm, considering that saturation has been reached. On site, Ks varies from 20 to 410 mm/h. Several PTFs for estimating Ks were selected (Rawls & Brakensiek, 1985, Wösten et al., 1999, Weynants et al., 2009, Szabó et al., 2021, Rosetta (Schaap et al., 2001; Zhang & Schaap, 2017)). The study will help us to identify some geological or land cover drivers for Ks ranges and to select which PTFs are able to represent such a variability
Saturated hydraulic conductivity spatialization strategy to model recharge and hydrogeological transfers on an industrial site in France
International audiencePollutant transfers in the critical zone is an issue for decades both because of complex physico-chemical interactions in the porous media and because of the emergence of new materials/molecules rejected in the environment for which rules are not ready. The study presented here is part of a research project which aimed to predict transfers and residence time of pollutants in the critical zone including the Unsaturated Zone (UZ), and in aquifers on the CEA Cadarache site (France). This site benefits from a large instrumentation for decades to survey both the water dynamic and quality in the aquifers below the industrial facilities. One of the remaining challenges is to study the distributed recharge in the UZ. In situ measurements of saturated hydraulic conductivity Ks are often time-consuming, but also costly to implement at a catchment scale. To overcome this difficulty, an approach using Pedotransfer Functions (PTFs) is possible in order to spatialize this parameter of the UZ (Nasta et al., 2021; Weihermüller et al., 2021). The main objective of the study is to evaluate a spatialization strategy of Ks values using PTFs calibrated from an intensive in situ measurement campaign. A total of 48 measurement points were selected on the study site, covering an area of around 900 hectares. The points were chosen to represent the different types of geological formations at the outcrop as well as the different types of land cover on the site. For all those locations, in situ hydraulic conductivity measurements were carried out with a disc infiltrometer, using the multi-potential method (Vandervaere, 1995), together with physico-chemical analyses of the surface soils. The results obtained show that for most of the measurement points, a fairly clear break in the slope of the exponential function K(h) appears for potentials h around -30 / -20 mm. The estimate of the value of Ks is chosen as being the value of K(h) obtained for the last value of potential h = - 5 mm, considering that saturation has been reached. On site, Ks varies from 20 to 410 mm/h. Several PTFs for estimating Ks were selected (Rawls & Brakensiek, 1985, Wösten et al., 1999, Weynants et al., 2009, Szabó et al., 2021, Rosetta (Schaap et al., 2001; Zhang & Schaap, 2017)). The study will help us to identify some geological or land cover drivers for Ks ranges and to select which PTFs are able to represent such a variability
Saturated hydraulic conductivity spatialization strategy to model recharge and hydrogeological transfers on an industrial site in France
International audiencePollutant transfers in the critical zone is an issue for decades both because of complex physico-chemical interactions in the porous media and because of the emergence of new materials/molecules rejected in the environment for which rules are not ready. The study presented here is part of a research project which aimed to predict transfers and residence time of pollutants in the critical zone including the Unsaturated Zone (UZ), and in aquifers on the CEA Cadarache site (France). This site benefits from a large instrumentation for decades to survey both the water dynamic and quality in the aquifers below the industrial facilities. One of the remaining challenges is to study the distributed recharge in the UZ. In situ measurements of saturated hydraulic conductivity Ks are often time-consuming, but also costly to implement at a catchment scale. To overcome this difficulty, an approach using Pedotransfer Functions (PTFs) is possible in order to spatialize this parameter of the UZ (Nasta et al., 2021; Weihermüller et al., 2021). The main objective of the study is to evaluate a spatialization strategy of Ks values using PTFs calibrated from an intensive in situ measurement campaign. A total of 48 measurement points were selected on the study site, covering an area of around 900 hectares. The points were chosen to represent the different types of geological formations at the outcrop as well as the different types of land cover on the site. For all those locations, in situ hydraulic conductivity measurements were carried out with a disc infiltrometer, using the multi-potential method (Vandervaere, 1995), together with physico-chemical analyses of the surface soils. The results obtained show that for most of the measurement points, a fairly clear break in the slope of the exponential function K(h) appears for potentials h around -30 / -20 mm. The estimate of the value of Ks is chosen as being the value of K(h) obtained for the last value of potential h = - 5 mm, considering that saturation has been reached. On site, Ks varies from 20 to 410 mm/h. Several PTFs for estimating Ks were selected (Rawls & Brakensiek, 1985, Wösten et al., 1999, Weynants et al., 2009, Szabó et al., 2021, Rosetta (Schaap et al., 2001; Zhang & Schaap, 2017)). The study will help us to identify some geological or land cover drivers for Ks ranges and to select which PTFs are able to represent such a variability
- …