335 research outputs found

    Orchestrated transcription of biological processes in the marine picoeukaryote Ostreococcus exposed to light/dark cycles

    Get PDF
    Background: Picoeukaryotes represent an important, yet poorly characterized component of marine phytoplankton. The recent genome availability for two species of Ostreococcus and Micromonas has led to the emergence of picophytoplankton comparative genomics. Sequencing has revealed many unexpected features about genome structure and led to several hypotheses on Ostreococcus biology and physiology. Despite the accumulation of genomic data, little is known about gene expression in eukaryotic picophytoplankton. Results: We have conducted a genome-wide analysis of gene expression in Ostreococcus tauri cells exposed to light/dark cycles (L/D). A Bayesian Fourier Clustering method was implemented to cluster rhythmic genes according to their expression waveform. In a single L/D condition nearly all expressed genes displayed rhythmic patterns of expression. Clusters of genes were associated with the main biological processes such as transcription in the nucleus and the organelles, photosynthesis, DNA replication and mitosis. Conclusions: Light/Dark time-dependent transcription of the genes involved in the main steps leading to protein synthesis (transcription basic machinery, ribosome biogenesis, translation and aminoacid synthesis) was observed, to an unprecedented extent in eukaryotes, suggesting a major input of transcriptional regulations in Ostreococcus. We propose that the diurnal co-regulation of genes involved in photoprotection, defence against oxidative stress and DNA repair might be an efficient mechanism, which protects cells against photo-damage thereby, contributing to the ability of O. tauri to grow under a wide range of light intensities

    Overview of Cellular Immunotherapy for Patients with Glioblastoma

    Get PDF
    High grade gliomas (HGG) including glioblastomas (GBM) are the most common and devastating primary brain tumours. Despite important progresses in GBM treatment that currently includes surgery combined to radio- and chemotherapy, GBM patients' prognosis remains very poor. Immunotherapy is one of the new promising therapeutic approaches that can specifically target tumour cells. Such an approach could also maintain long term antitumour responses without inducing neurologic defects. Since the past 25 years, adoptive and active immunotherapies using lymphokine-activated killer cells, cytotoxic T cells, tumour-infiltrating lymphocytes, autologous tumour cells, and dendritic cells have been tested in phase I/II clinical trials with HGG patients. This paper inventories these cellular immunotherapeutic strategies and discusses their efficacy, limits, and future perspectives for optimizing the treatment to achieve clinical benefits for GBM patients

    Simultaneous analysis of distinct Omics data sets with integration of biological knowledge: Multiple Factor Analysis approach

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Genomic analysis will greatly benefit from considering in a global way various sources of molecular data with the related biological knowledge. It is thus of great importance to provide useful integrative approaches dedicated to ease the interpretation of microarray data.</p> <p>Results</p> <p>Here, we introduce a data-mining approach, Multiple Factor Analysis (MFA), to combine multiple data sets and to add formalized knowledge. MFA is used to jointly analyse the structure emerging from genomic and transcriptomic data sets. The common structures are underlined and graphical outputs are provided such that biological meaning becomes easily retrievable. Gene Ontology terms are used to build gene modules that are superimposed on the experimentally interpreted plots. Functional interpretations are then supported by a step-by-step sequence of graphical representations.</p> <p>Conclusion</p> <p>When applied to genomic and transcriptomic data and associated Gene Ontology annotations, our method prioritize the biological processes linked to the experimental settings. Furthermore, it reduces the time and effort to analyze large amounts of 'Omics' data.</p

    Iron-related transcriptomic variations in Caco-2 cells: in silico perspectives.

    No full text
    International audienceThe iron absorption by duodenal enterocytes is a key step of its homeostasis. But the control of this absorption is complex and cannot be fully explicated with present knowledge. In a global transcriptome approach, we identified 60 genes over-expressed in hemin (iron) overload in Caco-2 cells, an in vitro model of duodenal enterocytes. The challenge from there was to identify the affected molecular mechanisms and achieve a biological interpretation for that cluster. In that purpose, we built up a functional annotation method combining evidence and literature. Our method identified four pathways in the Process hierarchy of the Gene Ontology (GO): lipid metabolism, amino acid and cofactor metabolism, response to stimulus and transport. The accuracy of this functional profile is supported by the identification of known pathways associated with the iron overload (response to oxidative stress, glutathione metabolism). But our method also suggests new hypotheses on the regulation of iron uptake in Caco-2 cells. It is hypothesized that plasma membrane remodeling and vesicular recycling could be a potential modulator of iron transport proteins activities. These assumptions yet require a biological validation and they will therefore direct further research. Our functional annotation method is a valuable tool designed to help the biologist understand the biological links between the genes of a cluster, elaborate working hypotheses and direct future work. This work is also a validation 'by hand' of a biomedical text-mining system

    Differential analysis of glioblastoma multiforme proteome by a 2D-DIGE approach

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Genomics, transcriptomics and proteomics of glioblastoma multiforme (GBM) have recently emerged as possible tools to discover therapeutic targets and biomarkers for new therapies including immunotherapy. It is well known that macroscopically complete surgical excision, radiotherapy and chemotherapy have therapeutic limitations to improve survival in these patients. In this study, we used a differential proteomic-based technique (2D-Difference Gel Electrophoresis) coupled with matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry to identify proteins that may serve as brain tumor antigens in new therapeutic assays. Five samples of patients presenting a GBM and five samples of microscopically normal brain tissues derived from brain epileptic surgery specimen were labeled and run in 2D-PAGE (Two-Dimensional Polyacrylamide Gel Electrophoresis) with an internal pool sample on each gel. Five gels were matched and compared with DIA (Difference In-gel Analysis) software. Differential spots were picked, in-gel digested and peptide mass fingerprints were obtained.</p> <p>Results</p> <p>From 51 protein-spots significantly up-regulated in GBM samples, mass spectrometry (MS) identified twenty-two proteins. The differential expression of a selected protein set was first validated by western-blotting, then tested on large cohorts of GBM specimens and non-tumor tissues, using immunohistochemistry and real-time RT-PCR.</p> <p>Conclusions</p> <p>Our results confirmed the importance of previously described proteins in glioma pathology and their potential usefulness as biological markers but also revealed some new interesting targets for future therapies.</p

    The adipocyte differentiation protein APMAP is an endogenous suppressor of Aβ production in the brain

    Get PDF
    The deposition of amyloid-beta (Aβ) aggregates in the brain is a major pathological hallmark of Alzheimer's disease (AD). Aβ is generated from the cleavage of C-terminal fragments of the amyloid precursor protein (APP-CTFs) by γ-secretase, an intramembrane-cleaving protease with multiple substrates, including the Notch receptors. Endogenous modulation of γ-secretase is pointed to be implicated in the sporadic, age-dependent form of AD. Moreover, specifically modulating Aβ production has become a priority for the safe treatment of AD because the inhibition of γ-secretase results in adverse effects that are related to impaired Notch cleavage. Here, we report the identification of the adipocyte differentiation protein APMAP as a novel endogenous suppressor of Aβ generation. We found that APMAP interacts physically with γ-secretase and its substrate APP. In cells, the partial depletion of APMAP drastically increased the levels of APP-CTFs, as well as uniquely affecting their stability, with the consequence being increased secretion of Aβ. In wild-type and APP/ presenilin 1 transgenic mice, partial adeno-associated virus-mediated APMAP knockdown in the hippocampus increased Aβ production by ∼20 and ∼55%, respectively. Together, our data demonstrate that APMAP is a negative regulator of Aβ production through its interaction with APP and γ-secretase. All observed APMAP phenotypes can be explained by an impaired degradation of APP-CTFs, likely caused by an altered substrate transport capacity to the lysosomal/autophagic syste

    Combining evidence, biomedical literature and statistical dependence: new insights for functional annotation of gene sets

    Get PDF
    BACKGROUND: Large-scale genomic studies based on transcriptome technologies provide clusters of genes that need to be functionally annotated. The Gene Ontology (GO) implements a controlled vocabulary organised into three hierarchies: cellular components, molecular functions and biological processes. This terminology allows a coherent and consistent description of the knowledge about gene functions. The GO terms related to genes come primarily from semi-automatic annotations made by trained biologists (annotation based on evidence) or text-mining of the published scientific literature (literature profiling). RESULTS: We report an original functional annotation method based on a combination of evidence and literature that overcomes the weaknesses and the limitations of each approach. It relies on the Gene Ontology Annotation database (GOA Human) and the PubGene biomedical literature index. We support these annotations with statistically associated GO terms and retrieve associative relations across the three GO hierarchies to emphasise the major pathways involved by a gene cluster. Both annotation methods and associative relations were quantitatively evaluated with a reference set of 7397 genes and a multi-cluster study of 14 clusters. We also validated the biological appropriateness of our hybrid method with the annotation of a single gene (cdc2) and that of a down-regulated cluster of 37 genes identified by a transcriptome study of an in vitro enterocyte differentiation model (CaCo-2 cells). CONCLUSION: The combination of both approaches is more informative than either separate approach: literature mining can enrich an annotation based only on evidence. Text-mining of the literature can also find valuable associated MEDLINE references that confirm the relevance of the annotation. Eventually, GO terms networks can be built with associative relations in order to highlight cooperative and competitive pathways and their connected molecular functions

    Acid/base-triggered photophysical and chiroptical switching in a series of helicenoid compounds

    Get PDF
    International audienceA series of molecules that possess two quinolines, benzoquinolines, or phenanthrolines connected in a chiral fashion by a biaryl junction along with their water-soluble derivatives was developed and characterized. The influence of the structure on the basicity of the nitrogen atoms in two heterocycles was examined and the photophysical and chiroptical switching activity of the compounds upon protonation was studied both experimentally and computationally. The results demonstrated that changes in the electronic structure of the protonated vs. neutral species, promoting a bathochromic shift of dominant electronic transitions and alternation of their character from π-to-π* to charge-transfer-type, when additionally accompanied by the high structural flexibility of a system, leading to changes in conformational preferences upon proton binding, produce particularly pronounced modifications of the spectral properties in acidic medium. The latter combined with reversibility of the read-out make some of the molecules in this series very promising multifunctional pH probes

    DGKI Methylation Status Modulates the Prognostic Value of MGMT in Glioblastoma Patients Treated with Combined Radio-Chemotherapy with Temozolomide

    No full text
    International audienceBackgroundConsistently reported prognostic factors for glioblastoma (GBM) are age, extent of surgery, performance status, IDH1 mutational status, and MGMT promoter methylation status. We aimed to integrate biological and clinical prognostic factors into a nomogram intended to predict the survival time of an individual GBM patient treated with a standard regimen. In a previous study we showed that the methylation status of the DGKI promoter identified patients with MGMT-methylated tumors that responded poorly to the standard regimen. We further evaluated the potential prognostic value of DGKI methylation status.Methods399 patients with newly diagnosed GBM and treated with a standard regimen were retrospectively included in this study. Survival modelling was performed on two patient populations: intention-to-treat population of all included patients (population 1) and MGMT-methylated patients (population 2). Cox proportional hazard models were fitted to identify the main prognostic factors. A nomogram was developed for population 1. The prognostic value of DGKI promoter methylation status was evaluated on population 1 and population 2.ResultsThe nomogram-based stratification of the cohort identified two risk groups (high/low) with significantly different median survival. We validated the prognostic value of DGKI methylation status for MGMT-methylated patients. We also demonstrated that the DGKI methylation status identified 22% of poorly responding patients in the low-risk group defined by the nomogram.ConclusionsOur results improve the conventional MGMT stratification of GBM patients receiving standard treatment. These results could help the interpretation of published or ongoing clinical trial outcomes and refine patient recruitment in the future
    corecore