5,459 research outputs found
Joint Mobility and Routing for Lifetime Elongation in Wireless Sensor Networks
Although many energy efficient/conserving routing protocols have been proposed for wireless sensor networks, the concentration of data traffic towards a small number of base stations remains a major threat to the network lifetime. The main reason is that the sensor nodes located near a base station have to relay data for a large part of the network and thus deplete their batteries very quickly. The solution we propose in this paper suggests that the base station be mobile; in this way, the nodes located close to it change over time. Data collection protocols can then be optimized by taking both base station mobility and multi-hop routing into account. We first study the former, and conclude that the best mobility strategy consists in following the periphery of the network (we assume that the sensors are deployed within a circle). We then consider jointly mobility and routing algorithms in this case, and show that a better routing strategy uses a combination of round routes and short paths. We provide a detailed analytical model for each of our statements, and corroborate it with simulation results. We show that the obtained improvement in terms of network lifetime is in the order of 500%
Stability of faults with heterogeneous friction properties and effective normal stress
Abundant geological, seismological and experimental evidence of the heterogeneous structure of natural faults motivates the theoretical and computational study of the mechanical behavior of heterogeneous frictional fault interfaces. Fault zones are composed of a mixture of materials with contrasting strength, which may affect the spatial variability of seismic coupling, the location of high-frequency radiation and the diversity of slip behavior observed in natural faults. To develop a quantitative understanding of the effect of strength heterogeneity on the mechanical behavior of faults, here we investigate a fault model with spatially variable frictional properties and pore pressure. Conceptually, this model may correspond to two rough surfaces in contact along discrete asperities, the space in between being filled by compressed gouge. The asperities have different permeability than the gouge matrix and may be hydraulically sealed, resulting in different pore pressure. We consider faults governed by rate-and-state friction, with mixtures of velocity-weakening and velocity-strengthening materials and contrasts of effective normal stress. We systematically study the diversity of slip behaviors generated by this model through multi-cycle simulations and linear stability analysis. The fault can be either stable without spontaneous slip transients, or unstable with spontaneous rupture. When the fault is unstable, slip can rupture either part or the entire fault. In some cases the fault alternates between these behaviors throughout multiple cycles. We determine how the fault behavior is controlled by the proportion of velocity-weakening and velocity-strengthening materials, their relative strength and other frictional properties. We also develop, through heuristic approximations, closed-form equations to predict the stability of slip on heterogeneous faults. Our study shows that a fault model with heterogeneous materials and pore pressure contrasts is a viable framework to reproduce the full spectrum of fault behaviors observed in natural faults: from fast earthquakes, to slow transients, to stable sliding. In particular, this model constitutes a building block for models of episodic tremor and slow slip events
High sensitivity variable-temperature infrared nanoscopy of conducting oxide interfaces
Probing the local transport properties of two-dimensional electron systems
(2DES) confined at buried interfaces requires a non-invasive technique with a
high spatial resolution operating in a broad temperature range. In this paper,
we investigate the scattering-type scanning near field optical microscopy as a
tool for studying the conducting LaAlO3/SrTiO3 interface from room temperature
down to 6 K. We show that the near-field optical signal, in particular its
phase component, is highly sensitive to the transport properties of the
electron system present at the interface. Our modelling reveals that such
sensitivity originates from the interaction of the AFM tip with coupled
plasmon-phonon modes with a small penetration depth. The model allows us to
quantitatively correlate changes in the optical signal with the variation of
the 2DES transport properties induced by cooling and by electrostatic gating.
To probe the spatial resolution of the technique, we image conducting
nano-channels written in insulating heterostructures with a voltage-biased tip
of an atomic force microscope.Comment: 19 pages, 5 figure
Mapping evapotranspiration variability over a complex oasis-desert ecosystem based on automated calibration of Landsat 7 ETM+ data in SEBAL
Fragmented ecosystems of the desiccated Aral Sea seek answers to the profound local hydrologically- and water-related problems. Particularly, in the Small Aral Sea Basin (SASB), these problems are associated with low precipitation, increased temperature, land use and evapotranspiration (ET) changes. Here, the utility of high-resolution satellite dataset is employed to model the growing season dynamic of near-surface fluxes controlled by the advective effects of desert and oasis ecosystems in the SASB. This study adapted and applied the sensible heat flux calibration mechanism of Surface Energy Balance Algorithm for Land (SEBAL) to 16 clear-sky Landsat 7 ETM+ dataset, following a guided automatic pixels search from surface temperature T-s and Normalized Difference Vegetation Index NDVI (). Results were comprehensively validated with flux components and actual ET (ETa) outputs of Eddy Covariance (EC) and Meteorological Station (KZL) observations located in the desert and oasis, respectively. Compared with the original SEBAL, a noteworthy enhancement of flux estimations was achieved as follows: - desert ecosystem ETa R-2 = 0.94; oasis ecosystem ETa R-2 = 0.98 (P < 0.05). The improvement uncovered the exact land use contributions to ETa variability, with average estimates ranging from 1.24 mm to 6.98 mm . Additionally, instantaneous ET to NDVI (ETins-NDVI) ratio indicated that desert and oasis consumptive water use vary significantly with time of the season. This study indicates the possibility of continuous daily ET monitoring with considerable implications for improving water resources decision support over complex data-scarce drylands
Intra subject 3D/3D Kidney Registration using Local Mutual Information Maximization
International audienceOne of the goal of the Nephron-Sparing Surgery properative planning is to delineate as exactly as possible the renal carcinoma and to specify its relations to the renal arterial, venous and collecting system anatomies. The classical preoperative imaging system is the Spiral CT Urography, which gives sucessive 3D acquisitions of complementary information The integration of this information within the a patient spacific anatomical referential can be achieved by intra-patient registration techniques. A local MI maximization registration method is proposed in this paper. The kidneys are extracted from the abdomen volumes and then the registration between the extracted kidneys is implemented by maximizing the MI between them. The experimental results demonstrates that this method is effective
GossiCrypt: Wireless Sensor Network Data Confidentiality Against Parasitic Adversaries
Resource and cost constraints remain a challenge for wireless sensor network
security. In this paper, we propose a new approach to protect confidentiality
against a parasitic adversary, which seeks to exploit sensor networks by
obtaining measurements in an unauthorized way. Our low-complexity solution,
GossiCrypt, leverages on the large scale of sensor networks to protect
confidentiality efficiently and effectively. GossiCrypt protects data by
symmetric key encryption at their source nodes and re-encryption at a randomly
chosen subset of nodes en route to the sink. Furthermore, it employs key
refreshing to mitigate the physical compromise of cryptographic keys. We
validate GossiCrypt analytically and with simulations, showing it protects data
confidentiality with probability almost one. Moreover, compared with a system
that uses public-key data encryption, the energy consumption of GossiCrypt is
one to three orders of magnitude lower
- …