129 research outputs found

    Progress Toward Nanowire Device Assembly Technology

    Get PDF

    Reconstructing the Deep Population History of Central and South America

    Get PDF
    We report genome-wide ancient DNA from 49 individuals forming four parallel time transects in Belize, Brazil, the Central Andes, and the Southern Cone, each dating to at least 9,000 years ago. The common ancestral population radiated rapidly from just one of the two early branches that contributed to Native Americans today. We document two previously unappreciated streams of gene flow between North and South America. One affected the Central Andes by 4,200 years ago, while the other explains an affinity between the oldest North American genome associated with the Clovis culture and the oldest Central and South Americans from Chile, Brazil, and Belize. However, this was not the primary source for later South Americans, as the other ancient individuals derive from lineages without specific affinity to the Clovis-associated genome, suggesting a population replacement that began at least 9,000 years ago and was followed by substantial population continuity in multiple regions

    Vaccine breakthrough hypoxemic COVID-19 pneumonia in patients with auto-Abs neutralizing type I IFNs

    Full text link
    Life-threatening `breakthrough' cases of critical COVID-19 are attributed to poor or waning antibody response to the SARS- CoV-2 vaccine in individuals already at risk. Pre-existing autoantibodies (auto-Abs) neutralizing type I IFNs underlie at least 15% of critical COVID-19 pneumonia cases in unvaccinated individuals; however, their contribution to hypoxemic breakthrough cases in vaccinated people remains unknown. Here, we studied a cohort of 48 individuals ( age 20-86 years) who received 2 doses of an mRNA vaccine and developed a breakthrough infection with hypoxemic COVID-19 pneumonia 2 weeks to 4 months later. Antibody levels to the vaccine, neutralization of the virus, and auto- Abs to type I IFNs were measured in the plasma. Forty-two individuals had no known deficiency of B cell immunity and a normal antibody response to the vaccine. Among them, ten (24%) had auto-Abs neutralizing type I IFNs (aged 43-86 years). Eight of these ten patients had auto-Abs neutralizing both IFN-a2 and IFN-., while two neutralized IFN-omega only. No patient neutralized IFN-ss. Seven neutralized 10 ng/mL of type I IFNs, and three 100 pg/mL only. Seven patients neutralized SARS-CoV-2 D614G and the Delta variant (B.1.617.2) efficiently, while one patient neutralized Delta slightly less efficiently. Two of the three patients neutralizing only 100 pg/mL of type I IFNs neutralized both D61G and Delta less efficiently. Despite two mRNA vaccine inoculations and the presence of circulating antibodies capable of neutralizing SARS-CoV-2, auto-Abs neutralizing type I IFNs may underlie a significant proportion of hypoxemic COVID-19 pneumonia cases, highlighting the importance of this particularly vulnerable population

    Development and performance assessment of a physical direct luminous efficacy model

    No full text
    Atmospheric turbidity is shown to have a major influence on direct luminous efficacy. Based on this observation a physical direct luminous efficacy model is derived from spectrally integrated turbidity equations. Two independent data banks are used to validate this model in comparison to state of the art direct luminous efficacy models found in the literature. Atmospheric turbidity is estimated from horizontal visibility measurements

    Plasmonic Hybrid Cavity-Channel Structure for Tunable Narrow-Band Optical Absorption

    No full text
    International audienceA hybrid plasmonic structure consisting of adjacent U-shaped cavities separated by a nanochannel is proposed for tunable and narrow-band selection of light. The hybrid cavity-channel structure achieves absorption resonance with a bandwidth, defined as the full-width at half-maximum, of 1.5 nm and tunable property in the near-infrared and infrared regions. The hybrid structure resonance originates in the coupling of horizontal surface plasmon mode of the U-cavity with channel mode, which sustains stationary-surface-plasmons in the channel with antinodes at the channel entrances enabling light concentration and nodes at the channel exits enabling light confinement. As a result of the coupling, a sharp and strong absorption resonance is readily adjustable by varying the geometrical parameters of the U-cavity while keeping the channel parameters unchanged
    • …
    corecore