986 research outputs found

    Robustness of the intrinsic anomalous Hall effect in Fe3GeTe2 to a uniaxial strain

    Full text link
    Fe3GeTe2 (FGT), a ferromagnetic van der Waals topological nodal line semimetal, has recently been studied. Using first-principles calculations and symmetry analysis, we investigate the effect of a uniaxial tensile strain on the nodal line and the resultant intrinsic anomalous Hall effect (AHE). Our results reveal their robustness to the in-plane strain. Moreover, the intrinsic AHE remains robust even for artificial adjustment of the atomic positions introduced to break the crystalline symmetries of FGT. When the spin-orbit coupling is absent, the nodal line degeneracy remains intact as long as the inversion symmetry or the two-fold screw symmetry is maintained, which reveal that the nodal line may emerge much more easily than previously predicted. This strong robustness is surprising and disagrees with the previous experimental report [Y. Wang et al., Adv. Mater. 32, 2004533 (2020)], which reports that a uniaxial strain of less than 1 % of the in-plane lattice constant can double the anomalous Hall resistance. This discrepancy implies that the present understanding of the AHE in FGT is incomplete. The possible origins of this discrepancy are discussed.Comment: 7 pages, 3 figure

    Finite element modeling and experimental verification of lightweight steel floor vibration

    Get PDF
    Due to the lack of design standard and the difficulty of analysis, the floor vibration analysis of lightweight steel floors has received less attention than the analysis of typical floor structures. In this paper, the finite element model for lightweight steel floors is presented utilizing the rigid link and realistic support restraints. The rigid rink is used to solve the problem of difference in the centroid of beam, joist, and flooring material and to guarantee the same behavior of those members. Two different support restraints, all fixed restraint and mixture of fixed and released restraint, are used in the analysis. The finite element model is verified through the human impact loading test of the full-scale light-weight steel floors that have different joist condition and middle beam. The finite element analysis results indicate that the different joists having same moment of inertia yield similar natural frequencies, while the test results of full-scale floors show that the floor with the closed shaped joists yields higher natural frequency than the floor with open shaped joists. The test results also indicate that the finite element analysis using the mixture of fixed and released support restraint yields closer natural frequencies to those of actual floors

    Role of interleukin-10 in endochondral bone formation in mice: Anabolic effect via the bone morphogenetic protein/Smad pathway

    Get PDF
    Objective: Interleukin-10 (IL-10) is a pleiotropic immunoregulatory cytokine with a chondroprotective effect that is elevated in cartilage and synovium in patients with osteoarthritis. However, the role of IL-10 during endochondral bone formation and its mechanism of action have not been elucidated. Methods: IL-10-/- mice and IL-10-treated tibial organ cultures were used to study loss and gain of IL-10 functions, respectively, during endochondral bone formation. Primary chondrocytes from the long bones of mouse embryos were cultured with and without IL-10. To assess the role of IL-10 in chondrogenic differentiation, we conducted mesenchymal cell micromass cultures. Results: The lengths of whole skeletons from IL-10-/- mice were similar to those of their wild-type littermates, although their skull diameters were smaller. The tibial growth plates of IL-10-/- mice showed shortening of the proliferating zone. Treatment with IL-10 significantly increased tibial lengths in organ culture. IL-10 also induced chondrocyte proliferation and hypertrophic differentiation in primary chondrocytes in vitro. Mechanistically, IL-10 activated STAT-3 and the Smad1/5/8 and ERK-1/2 MAP kinase pathways and induced the expression of bone morphogenetic protein 2 (BMP-2) and BMP-6 in primary chondrocytes. Furthermore, the blocking of BMP signaling attenuated the IL-10-mediated induction of cyclin D1 and RUNX-2 in primary chondrocytes and suppressed Alcian blue and alkaline phosphatase staining in mesenchymal cell micromass cultures. Conclusion: These results indicate that IL-10 acts as a stimulator of chondrocyte proliferation and chondrogenic or hypertrophic differentiation via activation of the BMP signaling pathway. © 2013, American College of Rheumatology

    Short-Term Effects of Ginkgo biloba Extract on Peripapillary Retinal Blood Flow in Normal Tension Glaucoma

    Get PDF
    PURPOSE: Based on the vascular theory of glaucoma pathogenesis, we wanted to evaluate the effect of Ginkgo biloba extract (GBE) on peripapillary blood flow in patients with normal tension glaucoma (NTG). METHODS: Thirty patients with NTG were randomly placed in the GBE-treated or control groups. The GBE-treated group received 80 mg GBE orally, twice a day for four weeks, and the control group received a placebo twice a day for four weeks. Complete ocular examinations including visual field, Heidelberg retina flowmeter, and systemic examinations were performed on the first study day and on the day treatment was completed. RESULTS: After GBE treatment, the mean blood flow, volume, and velocity increased at almost all points, and there was a statistically significant increase in blood flow at almost all points, in comparison to the placebo. Blood volume significantly increased only in the superior nasal and superior temporal neuroretinal rim areas. GBE also significantly increased blood velocity in areas of the inferior temporal neuroretinal rim and superior temporal peripapillary area. CONCLUSIONS: GBE administration appears to have desirable effect on ocular blood flow in NTG patients.ope

    Transcriptional Regulator TonEBP Mediates Oxidative Damages in Ischemic Kidney Injury

    Get PDF
    TonEBP (tonicity-responsive enhancer binding protein) is a transcriptional regulator whose expression is elevated in response to various forms of stress including hyperglycemia, inflammation, and hypoxia. Here we investigated the role of TonEBP in acute kidney injury (AKI) using a line of TonEBP haplo-deficient mice subjected to bilateral renal ischemia followed by reperfusion (I/R). In the TonEBP haplo-deficient animals, induction of TonEBP, oxidative stress, inflammation, cell death, and functional injury in the kidney in response to I/R were all reduced. Analyses of renal transcriptome revealed that genes in several cellular pathways including peroxisome and mitochondrial inner membrane were suppressed in response to I/R, and the suppression was relieved in the TonEBP deficiency. Production of reactive oxygen species (ROS) and the cellular injury was reproduced in a renal epithelial cell line in response to hypoxia, ATP depletion, or hydrogen peroxide. The knockdown of TonEBP reduced ROS production and cellular injury in correlation with increased expression of the suppressed genes. The cellular injury was also blocked by inhibitors of necrosis. These results demonstrate that ischemic insult suppresses many genes involved in cellular metabolism leading to local oxidative stress by way of TonEBP induction. Thus, TonEBP is a promising target to prevent AKI

    Rapid suppression of quantum many-body magnetic exciton in doped van der Waals antiferromagnet (Ni,Cd)PS3

    Full text link
    The unique discovery of magnetic exciton in van der Waals antiferromagnet NiPS3 arises between two quantum many-body states of a Zhang-Rice singlet excited state and a Zhang-Rice triplet ground state. Simultaneously, the spectral width of photoluminescence originating from this exciton is exceedingly narrow as 0.4 meV. These extraordinary properties, including the extreme coherence of the magnetic exciton in NiPS3, beg many questions. We studied doping effects using Ni1-xCdxPS3 using two experimental techniques and theoretical studies. Our experimental results show that the magnetic exciton is drastically suppressed upon a few % Cd doping. All these happen while the width of the exciton only gradually increases, and the antiferromagnetic ground state is robust. These results highlight the lattice uniformity's hidden importance as a prerequisite for coherent magnetic exciton. Finally, an exciting scenario emerges: the broken charge transfer forbids the otherwise uniform formation of the coherent magnetic exciton in (Ni,Cd)PS3.Comment: 40 pages, 4 main figures, 13 supporting figures, accepted by Nano Letter

    Penetrating Carotid Artery Injuries Treated by an Urgent Endovascular Stent Technique: Report of Two Cases

    Get PDF
    Penetrating neck injuries are potentially dangerous and require emergent management because of the presence of vital structures in the neck. Penetrating vascular trauma to zone I and III of the neck is potentially life-threatening. An accurate diagnosis and adequate surgical intervention are critical to the successful outcome of penetrating trauma in the neck. We experienced some cases with externally penetrating injuries in neck zone II in which the patients were confirmed to have the presence of large vessel injuries in neck zones I and III. Here we report on the endovascular stent techniques used in two cases to address penetrating carotid artery injuries and review the literature

    Dilation of the olfactory bulb cavity concurrent with hydrocephalus in four small breed dogs

    Get PDF
    Four small breed dogs were admitted with seizures. Magnetic resonance imaging (MRI) of the brain revealed dilation of the olfactory bulb cavity as well as enlargement of the lateral ventricles. These findings demonstrate that dilation of the olfactory bulb cavity can occur concurrent with hydrocephalus. This is the first description of the clinical and MRI features of dilation of the olfactory bulb cavity concurrent with hydrocephalus in dogs

    Spin texture induced by non-magnetic doping and spin dynamics in 2D triangular lattice antiferromagnet h-Y(Mn,Al)O3

    Full text link
    Novel effects induced by nonmagnetic impurities in frustrated magnets and quantum spin liquid represent a highly nontrivial and interesting problem. A theoretical proposal of extended modulated spin structures induced by doping of such magnets, distinct from the well-known skyrmions has attracted significant interest. Here, we demonstrate that nonmagnetic impurities can produce such extended spin structures in h-YMnO3, a triangular antiferromagnet with noncollinear magnetic order. Using inelastic neutron scattering (INS), we measured the full dynamical structure factor in Al-doped h-YMnO3 and confirmed the presence of magnon damping with a clear momentum dependence. Our theoretical calculations can reproduce the key features of the INS data, supporting the formation of the proposed spin textures. As such, our study provides the first experimental confirmation of the impurity-induced spin textures. It offers new insights and understanding of the impurity effects in a broad class of noncollinear magnetic systems.Comment: 18 pages, 4 figures and supplementary Information. Accepted for publication in Nature Communication
    corecore