85 research outputs found

    Genomic surveillance of 4CMenB vaccine antigenic variants among disease-causing Neisseria meningitidis isolates, United Kingdom, 2010–2016

    Get PDF
    In September 2015, 4CMenB meningococcal vaccine was introduced into the United Kingdom infant immunization program without phase 3 trial information. Understanding the effect of this program requires enhanced surveillance of invasive meningococcal disease (IMD) Neisseria meningitidis isolates and comparison with prevaccination isolates. Bexsero Antigen Sequence Types (BASTs) were used to analyze whole-genome sequences of 3,073 prevaccine IMD N. meningitidis isolates obtained during 2010−2016. Isolates exhibited 803 BASTs among 31 clonal complexes. Frequencies of antigen peptide variants were factor H binding protein 1, 13.4%; Neisserial heparin-binding antigen 2, 13.8%; Neisseria adhesin A 8, 0.8%; and Porin A-VR2:P1.4,10.9%. In 2015−16, serogroup B isolates showed the highest proportion (35.7%) of exact matches to >1 Bexsero components. Serogroup W isolates showed the highest proportion (93.9%) of putatively cross-reactive variants of Bexsero antigens. Results highlighted the likely role of cross-reactive antigens. BAST surveillance of meningococcal whole-genome sequence data is rapid, scalable, and portable and enables international comparisons of isolates

    Targeted DNA enrichment and whole genome sequencing of Neisseria meningitidis directly from clinical specimens.

    Get PDF
    In England and Wales, approximately one half of all laboratory-confirmed meningococcal disease cases fail to yield a viable invasive isolate, primarily due to the use of antibiotics. Characterisation of non-culture meningococci has been restricted to the detection or sequencing of specific gene targets within clinical specimens. In this study we investigated the ability of the Agilent SureSelectXT kit to facilitate DNA enrichment and genome sequencing of meningococcal DNA within a small panel of blood and CSF specimens. A target-specific RNA oligonucleotide bait library was used to capture and enrich the bacterial DNA prior to next generation sequencing. A positive correlation between meningococcal DNA amount and genome coverage was observed with eight of the ten specimens producing genomes of acceptable quality. All commonly-used typing information derived from each acceptable non-culture genome matched those of an isolate from the same patient and the paired genomes showed a high level of congruence across indexed loci. We estimate that this technique could be used to perform whole genome sequencing on up to ∼45% of the positive specimens received by the Public Health England's Meningococcal Reference Unit. Further optimisation of the extraction and/or enrichment processes may, however, increase the proportion of non-culture cases from which quality genomes can be obtained

    Bactericidal antibody against a representative epidemiological meningococcal serogroup B panel confirms that MATS underestimates 4CMenB vaccine strain coverage

    Get PDF
    AbstractBackground4CMenB (Bexsero), a vaccine developed against invasive meningococcal disease caused by capsular group B strains (MenB), was recently licensed for use by the European Medicines Agency. Assessment of 4CMenB strain coverage in specific epidemiologic settings is of primary importance to predict vaccination impact on the burden of disease. The Meningococcal Antigen Typing System (MATS) was developed to predict 4CMenB strain coverage, using serum bactericidal antibody assay with human complement (hSBA) data from a diverse panel of strains not representative of any specific epidemiology.ObjectiveTo experimentally validate the accuracy of MATS-based predictions against strains representative of a specific epidemiologic setting.Methods and resultsWe used a stratified sampling method to identify a representative sample from all MenB disease isolates collected from England and Wales in 2007–2008, tested the strains in the hSBA assay with pooled sera from infant and adolescent vaccinees, and compared these results with MATS. MATS predictions and hSBA results were significantly associated (P=0.022). MATS predicted coverage of 70% (95% CI, 55–85%) was largely confirmed by 88% killing in the hSBA (95% CI, 72–95%). MATS had 78% accuracy and 96% positive predictive value against hSBA.ConclusionMATS is a conservative predictor of strain coverage by the 4CMenB vaccine in infants and adolescents

    The Influence of IS1301 in the Capsule Biosynthesis Locus on Meningococcal Carriage and Disease

    Get PDF
    Previously we have shown that insertion of IS1301 in the sia/ctr intergenic region (IGR) of serogroup C Neisseria meningitidis (MenC) isolates from Spain confers increased resistance against complement-mediated killing. Here we investigate the significance of IS1301 in the same location in N. meningitidis isolates from the UK. PCR and sequencing was used to screen a collection of more than 1500 meningococcal carriage and disease isolates from the UK for the presence of IS1301 in the IGR. IS1301 was not identified in the IGR among vaccine failure strains but was frequently found in serogroup B isolates (MenB) from clonal complex 269 (cc269). Almost all IS1301 insertions in cc269 were associated with novel polymorphisms, and did not change capsule expression or resistance to human complement. After excluding sequence types (STs) distant from the central genotype within cc269, there was no significant difference for the presence of IS1301 in the IGR of carriage isolates compared to disease isolates. Isolates with insertion of IS1301 in the IGR are not responsible for MenC disease in UK vaccine failures. Novel polymorphisms associated with IS1301 in the IGR of UK MenB isolates do not lead to the resistance phenotype seen for IS1301 in the IGR of MenC isolates

    Frequent capsule switching in 'ultra-virulent' meningococci - Are we ready for a serogroup B ST-11 complex outbreak?

    Get PDF
    The meningococcal ST-11 complex (cc11) causes large invasive disease outbreaks with high case fatality rates, such as serogroup C (MenC) epidemics in industrialised nations in the 1990s and the serogroup W epidemic currently expanding globally. Glycoconjugate vaccines are available for serogroups A, C, W and Y. Broad coverage protein-based vaccines have recently been licensed against serogroup B meningococci (MenB), however, these do not afford universal MenB protection. Capsular switching from MenC to MenB among cc11 organisms is concerning because a large MenB cc11 (B:cc11) outbreak has the potential to cause significant morbidity and mortality. This study aimed to assess the potential for licensed and developmental non-capsular meningococcal vaccines to protect against B:cc11. The population structure and vaccine antigen distribution was determined for a panel of >800 geo-temporally diverse, predominantly MenC cc11 and B:cc11 genomes. The two licensed vaccines potentially protect against many but not all B:cc11 meningococci. Furthermore, strain coverage by these vaccines is often due to a single vaccine antigen and both vaccines are highly susceptible to vaccine escape owing to the apparent dispensability of key proteins used as vaccine antigens. cc11 strains with MenB and MenC capsules warrant special consideration when formulating future non-capsular meningococcal vaccines

    Temporal associations between national outbreaks of meningococcal serogroup W and C disease in the Netherlands and England: an observational cohort study.

    Get PDF
    Since 2009, the incidence of meningococcal serogroup W disease has increased rapidly in the UK because of a single strain (the so-called original UK strain) belonging to the hypervirulent sequence type-11 clonal complex (cc11), with a variant outbreak strain (the so-called 2013 strain) emerging in 2013. Subsequently, the Netherlands has had an increase in the incidence of meningococcal serogroup W disease. We assessed the temporal and phylogenetic associations between the serogroup W outbreaks in the Netherlands and England, and the historical serogroup C outbreaks in both countries

    Antibiotic resistance among invasive Neisseria meningitidis isolates in England, Wales and Northern Ireland (2010/11 to 2018/19)

    Get PDF
    Invasive meningococcal disease (IMD), caused by Neisseria meningitidis, can have a fatality rate as high as 10%, even with appropriate treatment. In the UK, penicillin is administered to patients in primary care whilst third generation cephalosporins, cefotaxime and ceftriaxone, are administered in secondary care. The first-choice antibiotic for chemoprophylaxis of close contacts is ciprofloxacin, followed by rifampicin. Immunocompromised individuals are often recommended antibiotic chemoprophylaxis and vaccination due to a greater risk of IMD. Resistance to antibiotics among meningococci is relatively rare, however reduced susceptibility and resistance to penicillin are increasing globally. Resistance to third generation cephalosporins is seldom reported, however reduced susceptibility to both cefotaxime and ceftriaxone has been observed. Rifampicin resistance has been reported among meningococci, mainly following prophylaxis, and ciprofloxacin resistance, whilst uncommon, has also been reported across the globe. The Public Health England Meningococcal Reference Unit receives and characterises the majority of isolates from IMD cases in England, Wales and Northern Ireland. This study assessed the distribution of antibiotic resistance to penicillin, rifampicin, ciprofloxacin and cefotaxime among IMD isolates received at the MRU from 2010/11 to 2018/19 (n = 4,122). Out of the 4,122 IMD isolates, 113 were penicillin-resistant, five were ciprofloxacin-resistant, two were rifampicin-resistant, and one was cefotaxime-resistant. Penicillin resistance was due to altered penA alleles whilst rifampicin and ciprofloxacin resistance was due to altered rpoB and gyrA alleles, respectively. Cefotaxime resistance was observed in one isolate which had an altered penA allele containing additional mutations to those harboured by the penicillin-resistant isolates. This study identified several isolates with resistance to antibiotics used for current treatment and prophylaxis of IMD and highlights the need for continued surveillance of resistance among meningococci to ensure continued effective use

    Effectiveness of Meningococcal B Vaccine against Endemic Hypervirulent Neisseria meningitidis W Strain, England

    Get PDF
    Serum samples from children immunized with a meningococcal serogroup B vaccine demonstrated potent serum bactericidal antibody activity against the hypervirulent Neisseria meningitidis serogroup W strain circulating in England. The recent introduction of this vaccine into the United Kingdom national immunization program should also help protect infants against this endemic strain

    Viable <i>Neisseria meningitidis </i>is commonly present in saliva in healthy young adults:Non-invasive sampling and enhanced sensitivity of detection in a follow-up carriage study in Portuguese students

    Get PDF
    INTRODUCTION AND AIMS:Improved sensitivity and efficiency of detection and quantification of carriage of Neisseria meningitidis (Nm) in young people is important for evaluation of the impact of vaccines upon transmission and associated population-wide effects. Saliva collection is quick, non-invasive and facilitates frequent sampling, but has been reported to yield low sensitivity by culture. We re-evaluated this approach in a follow-up cross sectional study using direct and culture-amplified PCR. MATERIAL/METHODS:In April 2016 we collected paired oropharyngeal swabs (OPS) and saliva samples from 1005 healthy students in Portugal into STGG broth and stored them at -80°C until DNA extraction and batched qPCR analysis. Samples were also cultured on GC agar plates for 72h and PCR done on DNA extracts from overall growth. Nm isolates were also sought from a selection of 50 samples. qPCR amplification targets were superoxide dismutase sodC and capsular locus/genogroup-specific genes (B, C, W, X and Y) and, for cultured isolates only, porA. Cycle threshold values of ≤36 were considered positive. RESULTS:556 tests (460 samples, 363 subjects, 36.1%) were positive for Nm (sodC) and 65 (45, 36, 3.6%) for MenB. More salivas were positive by direct sodC qPCR (211, 21.0%) than OPS (126, 12.5%) but fewer were positive by culture-amplified qPCR (94 vs. 125). For both sample types, many that were negative on direct qPCR came positive on culture-amplification and Nm was consistently isolated from salivas in which culture amplified the PCR signal. Using both methods on both samples yielded 36.1% Nm and 5.5% encapsulated Nm carriage rates while direct qPCR on OPS alone detected 12.5% and 2.2%. CONCLUSIONS:Detectable MenB carriage rates (2.9%) were lower than 4 years earlier (6.8%) in this population (p = 0.0003). Viable meningococci were often present in saliva. Although evidence of encapsulated Nm was less frequent in saliva than OPS, collection is more acceptable to subjects allowing more frequent sampling. Use of culture-amplification increases detection sensitivity in both sample types, especially when combined with direct PCR. Combining these samples and/or methodologies could greatly enhance the power of carriage studies to detect the impact of vaccines upon carriage and transmission

    Surveillance and control of meningococcal disease in the COVID-19 era: A Global Meningococcal Initiative review

    Get PDF
    RevisiónThis review article incorporates information from the 4th Global Meningococcal Initiative summit meeting. Since the introduction of stringent COVID-19 infection control and lockdown measures globally in 2020, there has been an impact on IMD prevalence, surveillance, and vaccination compliance. Incidence rates and associated mortality fell across various regions during 2020. A reduction in vaccine uptake during 2020 remains a concern globally. In addition, several Neisseria meningitidis clonal complexes, particularly CC4821 and CC11, continue to exhibit resistance to antibiotics, with resistance to ciprofloxacin or beta-lactams mainly linked to modifications of gyrA or penA alleles, respectively. Beta-lactamase acquisition was also reported through horizontal gene transfer (blaROB-1) involving other bacterial species. Despite the challenges over the past year, progress has also been made on meningococcal vaccine development, with several pentavalent (serogroups ABCWY and ACWYX) vaccines currently being studied in late-stage clinical trial programmes.Medical writing support was funded by Sanofi Pasteur.S
    • …
    corecore