703 research outputs found
Barriers to Hospital Electronic Public Health Reporting and Implications for the COVID-19 Pandemic
We sought to identify barriers to hospital reporting of electronic surveillance data to local, state, and federal public health agencies and the impact on areas projected to be overwhelmed by the COVID-19 pandemic. Using 2018 American Hospital Association data, we identified barriers to surveillance data reporting and combined this with data on the projected impact of the COVID-19 pandemic on hospital capacity at the hospital referral region level.
Our results find the most common barrier was public health agencies lacked the capacity to electronically receive data, with 41.2% of all hospitals reporting it. We also identified 31 hospital referral regions in the top quartile of projected bed capacity needed for COVID-19 patients in which over half of hospitals in the area reported that the relevant public health agency was unable to receive electronic data.
Public health agencies’ inability to receive electronic data is the most prominent hospital-reported barrier to effective syndromic surveillance. This reflects the policy commitment of investing in information technology for hospitals without a concomitant investment in IT infrastructure for state and local public health agencies
Antibiotic prophylaxis is associated with subsequent resistant infections in children with an initial extended-spectrum-cephalosporin-resistant Enterobacteriaceae infection
ABSTRACT
The objective of this study was to assess the association between previous antibiotic use, particularly long-term prophylaxis, and the occurrence of subsequent resistant infections in children with index infections due to extended-spectrum-cephalosporin-resistant
Enterobacteriaceae
. We also investigated the concordance of the index and subsequent isolates. Extended-spectrum-cephalosporin-resistant
Escherichia coli
and
Klebsiella
spp. isolated from normally sterile sites of patients aged <22 years were collected along with associated clinical data from four freestanding pediatric centers. Subsequent isolates were categorized as concordant if the species, resistance determinants, and
fumC-fimH
(
E. coli
) or
tonB
(
Klebsiella pneumoniae
) type were identical to those of the index isolate. In total, 323 patients had 396 resistant isolates; 45 (14%) patients had ≥1 subsequent resistant infection, totaling 73 subsequent resistant isolates. The median time between the index and first subsequent infections was 123 (interquartile range, 43 to 225) days. In multivariable Cox proportional hazards analyses, patients were 2.07 times as likely to have a subsequent resistant infection (95% confidence interval, 1.11 to 3.87) if they received prophylaxis in the 30 days prior to the index infection. In 26 (58%) patients, all subsequent isolates were concordant with their index isolate, and 7 (16%) additional patients had at least 1 concordant subsequent isolate. In 12 of 17 (71%) patients with
E. coli
sequence type 131 (ST131)-associated type 40-30, all subsequent isolates were concordant. Subsequent extended-spectrum-cephalosporin-resistant infections are relatively frequent and are most commonly due to bacterial strains concordant with the index isolate. Further study is needed to assess the role prophylaxis plays in these resistant infections.
</jats:p
Recommended from our members
Colony-Level Effects of Amygdalin on Honeybees and Their Microbes
Amygdalin, a cyanogenic glycoside, is found in the nectar and pollen of almond trees, as well as in a variety of other crops, such as cherries, nectarines, apples and others. It is inevitable that western honeybees (Apis mellifera) consistently consume amygdalin during almond pollination season because almond crops are almost exclusively pollinated by honeybees. This study tests the effects of a field-relevant concentration of amygdalin on honeybee microbes and the activities of key honeybee genes. We executed a two-month field trial providing sucrose solutions with or without amygdalin ad libitum to free-flying honeybee colonies. We collected adult worker bees at four time points and used RNA sequencing technology and our HoloBee database to assess global changes in microbes and honeybee transcripts. Our hypothesis was that amygdalin will negatively affect bee microbes and possibly immune gene regulation. Using a log2 fold-change cutoff at two and intraday comparisons, we show no large change of bacterial counts, fungal counts or key bee immune gene transcripts, due to amygdalin treatment in relation to the control. However, relatively large titer decreases in the amygdalin treatment relative to the control were found for several viruses. Chronic bee paralysis virus levels had a sharp decrease (−14.4) with titers then remaining less than the control, Black queen cell virus titers were lower at three time points (\u3c−2) and Deformed wing virus titers were lower at two time points (\u3c−6) in amygdalin-fed compared to sucrose-fed colonies. Titers of Lotmaria passim were lower in the treatment group at three of the four dates (\u3c−4). In contrast, Sacbrood virus had two dates with relative increases in its titers (\u3e2). Overall, viral titers appeared to fluctuate more so than bacteria, as observed by highly inconstant patterns between treatment and control and throughout the season. Our results suggest that amygdalin consumption may reduce several honeybee viruses without affecting other microbes or colony-level expression of immune genes
Previous antibiotic exposure increases risk of infection with extended-spectrum-β-lactamase- and AmpC-producing Escherichia coli and Klebsiella pneumoniae in pediatric patients
The objective of this study was to determine whether antibiotic exposure is associated with extended-spectrum-beta-lactamase- or AmpC-producing Escherichia coli or Klebsiella pneumoniae infections in children. We collected extended-spectrum-beta-lactamase- or AmpC-producing E. coli or K. pneumoniae isolates and same-species susceptible controls from normally sterile sites of patients aged ≤21 years, along with associated clinical data, at four free-standing pediatric centers. After controlling for potential confounders, the relative risk of having an extended-spectrum-beta-lactamase-producing isolate rather than a susceptible isolate was 2.2 times higher (95% confidence interval [CI], 1.49 to 3.35) among those with antibiotic exposure in the 30 days prior to infection than in those with no antibiotic exposure. The results were similar when analyses were limited to exposure to third-generation cephalosporins, other broad-spectrum beta-lactams, or trimethoprim-sulfamethoxazole. Conversely, the relative risk of having an AmpC-producing versus a susceptible isolate was not significantly elevated with any antibiotic exposure in the 30 days prior to infection (adjusted relative risk ratio, 1.12; 95% CI, 0.65 to 1.91). However, when examining subgroups of antibiotics, the relative risk of having an AmpC-producing isolate was higher for patients with exposure to third-generation cephalosporins (adjusted relative risk ratio, 4.48; 95% CI, 1.75 to 11.43). Dose-response relationships between antibiotic exposure and extended-spectrum-beta-lactamase-producing or AmpC-producing isolates were not demonstrated. These results reinforce the need to study and implement pediatric antimicrobial stewardship strategies, and they indicate that epidemiological studies of third-generation cephalosporin-resistant E. coli and K. pneumoniae isolates should include resistance mechanisms when possible
Filling Key Gaps in Population and Community Ecology
We propose research to fill key gaps in the areas of population and community ecology, based on a National Science Foundation workshop identifying funding priorities for the next 5–10 years. Our vision for the near future of ecology focuses on three core areas: predicting the strength and context-dependence of species interactions across multiple scales; identifying the importance of feedbacks from individual interactions to ecosystem dynamics; and linking pattern with process to understand species coexistence. We outline a combination of theory development and explicit, realistic tests of hypotheses needed to advance population and community ecology
Shedding light on the elusive role of endothelial cells in cytomegalovirus dissemination.
Cytomegalovirus (CMV) is frequently transmitted by solid organ transplantation and is associated with graft failure. By forming the boundary between circulation and organ parenchyma, endothelial cells (EC) are suited for bidirectional virus spread from and to the transplant. We applied Cre/loxP-mediated green-fluorescence-tagging of EC-derived murine CMV (MCMV) to quantify the role of infected EC in transplantation-associated CMV dissemination in the mouse model. Both EC- and non-EC-derived virus originating from infected Tie2-cre(+) heart and kidney transplants were readily transmitted to MCMV-naïve recipients by primary viremia. In contrast, when a Tie2-cre(+) transplant was infected by primary viremia in an infected recipient, the recombined EC-derived virus poorly spread to recipient tissues. Similarly, in reverse direction, EC-derived virus from infected Tie2-cre(+) recipient tissues poorly spread to the transplant. These data contradict any privileged role of EC in CMV dissemination and challenge an indiscriminate applicability of the primary and secondary viremia concept of virus dissemination
Ultrahigh speed 1050nm swept source / Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second
We demonstrate ultrahigh speed swept source/Fourier domain ophthalmic OCT imaging using a short cavity swept laser at 100,000 – 400,000 axial scan rates. Several design configurations illustrate tradeoffs in imaging speed, sensitivity, axial resolution, and imaging depth. Variable rate A/D optical clocking is used to acquire linear-in-k OCT fringe data at 100kHz axial scan rate with 5.3um axial resolution in tissue. Fixed rate sampling at 1 GSPS achieves a 7.5mm imaging range in tissue with 6.0um axial resolution at 100kHz axial scan rate. A 200kHz axial scan rate with 5.3um axial resolution over 4mm imaging range is achieved by buffering the laser sweep. Dual spot OCT using two parallel interferometers achieves 400kHz axial scan rate, almost 2X faster than previous 1050nm ophthalmic results and 20X faster than current commercial instruments. Superior sensitivity roll-off performance is shown. Imaging is demonstrated in the human retina and anterior segment. Wide field 12×12mm data sets include the macula and optic nerve head. Small area, high density imaging shows individual cone photoreceptors. The 7.5mm imaging range configuration can show the cornea, iris, and anterior lens in a single image. These improvements in imaging speed and depth range provide important advantages for ophthalmic imaging. The ability to rapidly acquire 3D-OCT data over a wide field of view promises to simplify examination protocols. The ability to image fine structures can provide detailed information on focal pathologies. The large imaging range and improved image penetration at 1050nm wavelengths promises to improve performance for instrumentation which images both the retina and anterior eye. These advantages suggest that swept source OCT at 1050nm wavelengths will play an important role in future ophthalmic instrumentation.National Institutes of Health (U.S.) (5R01-EY011289-23)National Institutes of Health (U.S.) (5R01-EY013178-10)National Institutes of Health (U.S.) (2R01-EY013516-07)National Institutes of Health (U.S.) (1R01-EY019029-02)United States. Air Force Office of Scientific Research (Contract Number FA9550-07-1-0014)United States. Dept. of Defense. Medical Free Electron Laser Program (Contract Number FA9550-07-1-0101
The Aerotactic Response of Caulobacter crescentus
Many motile microorganisms are able to detect chemical gradients in their surroundings to bias their motion toward more favorable conditions. In this study, we observe the swimming patterns of Caulobacter crescentus, a uniflagellated bacterium, in a linear oxygen gradient produced by a three-channel microfluidic device. Using low-magnification dark-field microscopy, individual cells are tracked over a large field of view and their positions within the oxygen gradient are recorded over time. Motor switching events are identified so that swimming trajectories are deconstructed into a series of forward and backward swimming runs. Using these data, we show that C. crescentus displays aerotactic behavior by extending the average duration of forward swimming runs while moving up an oxygen gradient, resulting in directed motility toward oxygen sources. Additionally, the motor switching response is sensitive both to the steepness of the gradient experienced and to background oxygen levels, exhibiting a logarithmic response
Crop Pests and Predators Exhibit Inconsistent Responses to Surrounding Landscape Composition
The idea that noncrop habitat enhances pest control and represents a win–win opportunity to conserve biodiversity and bolster yields has emerged as an agroecological paradigm. However, while noncrop habitat in landscapes surrounding farms sometimes benefits pest predators, natural enemy responses remain heterogeneous across studies and effects on pests are inconclusive. The observed heterogeneity in species responses to noncrop habitat may be biological in origin or could result from variation in how habitat and biocontrol are measured. Here, we use a pest-control database encompassing 132 studies and 6,759 sites worldwide to model natural enemy and pest abundances, predation rates, and crop damage as a function of landscape composition. Our results showed that although landscape composition explained significant variation within studies, pest and enemy abundances, predation rates, crop damage, and yields each exhibited different responses across studies, sometimes increasing and sometimes decreasing in landscapes with more noncrop habitat but overall showing no consistent trend. Thus, models that used landscape-composition variables to predict pest-control dynamics demonstrated little potential to explain variation across studies, though prediction did improve when comparing studies with similar crop and landscape features. Overall, our work shows that surrounding noncrop habitat does not consistently improve pest management, meaning habitat conservation may bolster production in some systems and depress yields in others. Future efforts to develop tools that inform farmers when habitat conservation truly represents a win–win would benefit from increased understanding of how landscape effects are modulated by local farm management and the biology of pests and their enemies
- …