725 research outputs found

    Radiocarbon dating results from the Beaker People Project, 2007: Scottish samples

    Get PDF
    The Beaker People Project is a major interdisciplinary five-year research programme, funded by the Arts and Humanities Research Council and led by one of the authors (Mike Parker Pearson of Sheffield University). It aims to investigate patterns of diet, mobility and health in British Beaker-associated skeletons (and in contemporaneous non-Beaker associated skeletons) to help address long-standing issues of identity, such as: are the people who were buried with Beaker pottery any different from their contemporaries who were not? Are possible immigrants identifiable, as was the case with the Amesbury Archer? The Project will investigate 250 sets of remains, from five geochemically-contrasting areas – namely eastern Scotland, Yorkshire, the Peak District, Wessex and Wales – using osteology, dental microwear, histology and pathology, and isotopic analysis of tooth enamel and bone (with carbon and nitrogen in bone providing information about diet, strontium and oxygen in tooth enamel providing information about mobility, and sulphur in bone providing information about coastal vs. non-coastal residence). A subset of the 250 individuals is to be radiocarbon-dated, to improve our understanding of Beaker chronology

    Jedi public health: Co-creating an identity-safe culture to promote health equity

    Get PDF
    Š 2016 The Authors. The extent to which socially-assigned and culturally mediated social identity affects health depends on contingencies of social identity that vary across and within populations in day-to-day life. These contingencies are structurally rooted and health damaging inasmuch as they activate physiological stress responses. They also have adverse effects on cognition and emotion, undermining self-confidence and diminishing academic performance. This impact reduces opportunities for social mobility, while ensuring those who "beat the odds" pay a physical price for their positive efforts. Recent applications of social identity theory toward closing racial, ethnic, and gender academic achievement gaps through changing features of educational settings, rather than individual students, have proved fruitful. We sought to integrate this evidence with growing social epidemiological evidence that structurally-rooted biopsychosocial processes have population health effects. We explicate an emergent framework, Jedi Public Health (JPH). JPH focuses on changing features of settings in everyday life, rather than individuals, to promote population health equity, a high priority, yet, elusive national public health objective. We call for an expansion and, in some ways, a re-orienting of efforts to eliminate population health inequity. Policies and interventions to remove and replace discrediting cues in everyday settings hold promise for disrupting the repeated physiological stress process activation that fuels population health inequities with potentially wide application.National Institute on Aging (Grant # R01 AG032632)National Institute on Aging (Grant # T32 AG00221

    Investigating the effectiveness of many-core network processors for high performance cyber protection systems. Part I, FY2011.

    Get PDF
    This report documents our first year efforts to address the use of many-core processors for high performance cyber protection. As the demands grow for higher bandwidth (beyond 1 Gbits/sec) on network connections, the need to provide faster and more efficient solution to cyber security grows. Fortunately, in recent years, the development of many-core network processors have seen increased interest. Prior working experiences with many-core processors have led us to investigate its effectiveness for cyber protection tools, with particular emphasis on high performance firewalls. Although advanced algorithms for smarter cyber protection of high-speed network traffic are being developed, these advanced analysis techniques require significantly more computational capabilities than static techniques. Moreover, many locations where cyber protections are deployed have limited power, space and cooling resources. This makes the use of traditionally large computing systems impractical for the front-end systems that process large network streams; hence, the drive for this study which could potentially yield a highly reconfigurable and rapidly scalable solution

    Omics-driven identification and elimination of valerolactam catabolism in Pseudomonas putida KT2440 for increased product titer.

    Get PDF
    Pseudomonas putida is a promising bacterial chassis for metabolic engineering given its ability to metabolize a wide array of carbon sources, especially aromatic compounds derived from lignin. However, this omnivorous metabolism can also be a hindrance when it can naturally metabolize products produced from engineered pathways. Herein we show that P. putida is able to use valerolactam as a sole carbon source, as well as degrade caprolactam. Lactams represent important nylon precursors, and are produced in quantities exceeding one million tons per year (Zhang et al., 2017). To better understand this metabolism we use a combination of Random Barcode Transposon Sequencing (RB-TnSeq) and shotgun proteomics to identify the oplBA locus as the likely responsible amide hydrolase that initiates valerolactam catabolism. Deletion of the oplBA genes prevented P. putida from growing on valerolactam, prevented the degradation of valerolactam in rich media, and dramatically reduced caprolactam degradation under the same conditions. Deletion of oplBA, as well as pathways that compete for precursors L-lysine or 5-aminovalerate, increased the titer of valerolactam from undetectable after 48 h of production to ~90 mg/L. This work may serve as a template to rapidly eliminate undesirable metabolism in non-model hosts in future metabolic engineering efforts

    Phylogeographic reconstruction of a bacterial species with high levels of lateral gene transfer

    Get PDF
    Background Phylogeographic reconstruction of some bacterial populations is hindered by low diversity coupled with high levels of lateral gene transfer. A comparison of recombination levels and diversity at seven housekeeping genes for eleven bacterial species, most of which are commonly cited as having high levels of lateral gene transfer shows that the relative contributions of homologous recombination versus mutation for Burkholderia pseudomallei is over two times higher than for Streptococcus pneumoniae and is thus the highest value yet reported in bacteria. Despite the potential for homologous recombination to increase diversity, B. pseudomallei exhibits a relative lack of diversity at these loci. In these situations, whole genome genotyping of orthologous shared single nucleotide polymorphism loci, discovered using next generation sequencing technologies, can provide very large data sets capable of estimating core phylogenetic relationships. We compared and searched 43 whole genome sequences of B. pseudomallei and its closest relatives for single nucleotide polymorphisms in orthologous shared regions to use in phylogenetic reconstruction. Results Bayesian phylogenetic analyses of >14,000 single nucleotide polymorphisms yielded completely resolved trees for these 43 strains with high levels of statistical support. These results enable a better understanding of a separate analysis of population differentiation among >1,700 B. pseudomallei isolates as defined by sequence data from seven housekeeping genes. We analyzed this larger data set for population structure and allele sharing that can be attributed to lateral gene transfer. Our results suggest that despite an almost panmictic population, we can detect two distinct populations of B. pseudomallei that conform to biogeographic patterns found in many plant and animal species. That is, separation along Wallace's Line, a biogeographic boundary between Southeast Asia and Australia. Conclusion We describe an Australian origin for B. pseudomallei, characterized by a single introduction event into Southeast Asia during a recent glacial period, and variable levels of lateral gene transfer within populations. These patterns provide insights into mechanisms of genetic diversification in B. pseudomallei and its closest relatives, and provide a framework for integrating the traditionally separate fields of population genetics and phylogenetics for other bacterial species with high levels of lateral gene transfer

    Noninvasive assessment of asthma severity using pulse oximeter plethysmograph estimate of pulsus paradoxus physiology

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pulsus paradoxus estimated by dynamic change in area under the oximeter plethysmograph waveform (PEP) might provide a measure of acute asthma severity. Our primary objective was to determine how well PEP correlates with forced expiratory volume in 1-second (%FEV<sub>1</sub>) (criterion validity) and change of %FEV<sub>1 </sub>(responsiveness) during treatment in pediatric patients with acute asthma exacerbations.</p> <p>Methods</p> <p>We prospectively studied subjects 5 to 17 years of age with asthma exacerbations. PEP, %FEV<sub>1</sub>, airway resistance and accessory muscle use were recorded at baseline and at 2 and 4 hours after initiation of corticosteroid and bronchodilator treatments. Statistical associations were tested with Pearson or Spearman rank correlations, logistic regression using generalized estimating equations, or Wilcoxon rank sum tests.</p> <p>Results</p> <p>We studied 219 subjects (median age 9 years; male 62%; African-American 56%). Correlation of PEP with %FEV<sub>1 </sub>demonstrated criterion validity (r = - 0.44, 95% confidence interval [CI], - 0.56 to - 0.30) and responsiveness at 2 hours (r = - 0.31, 95% CI, - 0.50 to - 0.09) and 4 hours (r = - 0.38, 95% CI, - 0.62 to - 0.07). PEP also correlated with airway resistance at baseline (r = 0.28 for ages 5 to 10; r = 0.45 for ages 10 to 17), but not with change over time. PEP was associated with accessory muscle use (OR 1.16, 95% CI, 1.11 to 1.21, P < 0.0001).</p> <p>Conclusions</p> <p>PEP demonstrates criterion validity and responsiveness in correlations with %FEV<sub>1</sub>. PEP correlates with airway resistance at baseline and is associated with accessory muscle use at baseline and at 2 and 4 hours after initiation of treatment. Incorporation of this technology into contemporary pulse oximeters may provide clinicians improved parameters with which to make clinical assessments of asthma severity and response to treatment, particularly in patients who cannot perform spirometry because of young age or severity of illness. It might also allow for earlier recognition and improved management of other disorders leading to elevated pulsus paradoxus.</p

    Host Genetics and Environmental Factors Regulate Ecological Succession of the Mouse Colon Tissue-Associated Microbiota

    Get PDF
    Background: The integration of host genetics, environmental triggers and the microbiota is a recognised factor in the pathogenesis of barrier function diseases such as IBD. In order to determine how these factors interact to regulate the host immune response and ecological succession of the colon tissue-associated microbiota, we investigated the temporal interaction between the microbiota and the host following disruption of the colonic epithelial barrier. Methodology/Principal Findings: Oral administration of DSS was applied as a mechanistic model of environmental damage of the colon and the resulting inflammation characterized for various parameters over time in WT and Nod2 KO mice. Results: In WT mice, DSS damage exposed the host to the commensal flora and led to a migration of the tissue-associated bacteria from the epithelium to mucosal and submucosal layers correlating with changes in proinflammatory cytokine profiles and a progressive transition from acute to chronic inflammation of the colon. Tissue-associated bacteria levels peaked at day 21 post-DSS and declined thereafter, correlating with recruitment of innate immune cells and development of the adaptive immune response. Histological parameters, immune cell infiltration and cytokine biomarkers of inflammation were indistinguishable between Nod2 and WT littermates following DSS, however, Nod2 KO mice demonstrated significantly higher tissue-associated bacterial levels in the colon. DSS damage and Nod2 genotype independently regulated the community structure of the colon microbiota

    Coastal Upwelling Supplies Oxygen-Depleted Water to the Columbia River Estuary

    Get PDF
    Low dissolved oxygen (DO) is a common feature of many estuarine and shallow-water environments, and is often attributed to anthropogenic nutrient enrichment from terrestrial-fluvial pathways. However, recent events in the U.S. Pacific Northwest have highlighted that wind-forced upwelling can cause naturally occurring low DO water to move onto the continental shelf, leading to mortalities of benthic fish and invertebrates. Coastal estuaries in the Pacific Northwest are strongly linked to ocean forcings, and here we report observations on the spatial and temporal patterns of oxygen concentration in the Columbia River estuary. Hydrographic measurements were made from transect (spatial survey) or anchor station (temporal survey) deployments over a variety of wind stresses and tidal states during the upwelling seasons of 2006 through 2008. During this period, biologically stressful levels of dissolved oxygen were observed to enter the Columbia River estuary from oceanic sources, with minimum values close to the hypoxic threshold of 2.0 mg L−1. Riverine water was consistently normoxic. Upwelling wind stress controlled the timing and magnitude of low DO events, while tidal-modulated estuarine circulation patterns influenced the spatial extent and duration of exposure to low DO water. Strong upwelling during neap tides produced the largest impact on the estuary. The observed oxygen concentrations likely had deleterious behavioral and physiological consequences for migrating juvenile salmon and benthic crabs. Based on a wind-forced supply mechanism, low DO events are probably common to the Columbia River and other regional estuaries and if conditions on the shelf deteriorate further, as observations and models predict, Pacific Northwest estuarine habitats could experience a decrease in environmental quality
    • …
    corecore