166 research outputs found
Dendritic Peptide Release Mediates Interpopulation Crosstalk between Neurosecretory and Preautonomic Networks
SummaryAlthough communication between neurons is considered a function of the synapse, neurons also release neurotransmitter from their dendrites. We found that dendritic transmitter release coordinates activity across distinct neuronal populations to generate integrative homeostatic responses. We show that activity-dependent vasopressin release from hypothalamic neuroendocrine neurons in the paraventricular nucleus stimulates neighboring (∼100 μm soma-to-soma) presympathetic neurons, resulting in a sympathoexcitatory population response. This interpopulation crosstalk was engaged by an NMDA-mediated increase in dendritic Ca2+, influenced by vasopressin’s ability to diffuse in the extracellular space, and involved activation of CAN channels at the target neurons. Furthermore, we demonstrate that this interpopulation crosstalk plays a pivotal role in the generation of a systemic, polymodal neurohumoral response to a hyperosmotic challenge. Because dendritic release is emerging as a widespread process, our results suggest that a similar mechanism could mediate interpopulation crosstalk in other brain systems, particularly those involved in generating complex behaviors.Video Abstrac
Decreased parenchymal arteriolar tone uncouples vessel-to-neuronal communication in a mouse model of vascular cognitive impairment
Chronic hypoperfusion is a key contributor to cognitive decline and neurodegenerative conditions, but the cellular mechanisms remain ill-defined. Using a multidisciplinary approach, we sought to elucidate chronic hypoperfusion-evoked functional changes at the neurovascular unit. We used bilateral common carotid artery stenosis (BCAS), a well-established model of vascular cognitive impairment, combined with an ex vivo preparation that allows pressurization of parenchymal arterioles in a brain slice. Our results demonstrate that mild (~ 30%), chronic hypoperfusion significantly altered the functional integrity of the cortical neurovascular unit. Although pial cerebral perfusion recovered over time, parenchymal arterioles progressively lost tone, exhibiting significant reductions by day 28 post-surgery. We provide supportive evidence for reduced adenosine 1 receptor-mediated vasoconstriction as a potential mechanism in the adaptive response underlying the reduced baseline tone in parenchymal arterioles. In addition, we show that in response to the neuromodulator adenosine, the action potential frequency of cortical pyramidal neurons was significantly reduced in all groups. However, a significant decrease in adenosine-induced hyperpolarization was observed in BCAS 14 days. At the microvascular level, constriction-induced inhibition of pyramidal neurons was significantly compromised in BCAS mice. Collectively, these results suggest that BCAS uncouples vessel-to-neuron communication—vasculo-neuronal coupling—a potential early event in cognitive decline.Fil: Kim, Ki Jung. Augusta University. Departament of Physiology; Estados UnidosFil: Diaz, Juan Ramiro. Augusta University. Departament of Physiology; Estados UnidosFil: Presa, Jessica Lorena. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; Argentina. Augusta University. Departament of Physiology; Estados UnidosFil: Muller, P. Robinson. Augusta University. Departament of Physiology; Estados UnidosFil: Brands, Michael W.. Augusta University. Departament of Physiology; Estados UnidosFil: Khan, Mohammad B.. Augusta University. Medical College of Georgia; Estados UnidosFil: Hess, David C.. Augusta University. Medical College of Georgia; Estados UnidosFil: Althammer, Ferdinand. Georgia State University; Estados UnidosFil: Stern, Javier E.. Georgia State University; Estados UnidosFil: Filosa, Jessica A.. Augusta University. Departament of Physiology; Estados Unido
Graphene plasmonics: A platform for strong light-matter interaction
Graphene plasmons provide a suitable alternative to noble-metal plasmons
because they exhibit much larger confinement and relatively long propagation
distances, with the advantage of being highly tunable via electrostatic gating.
We report strong light- matter interaction assisted by graphene plasmons, and
in particular, we predict unprecedented high decay rates of quantum emitters in
the proximity of a carbon sheet, large vacuum Rabi splitting and Purcell
factors, and extinction cross sections exceeding the geometrical area in
graphene ribbons and nanometer-sized disks. Our results provide the basis for
the emerging and potentially far-reaching field of graphene plasmonics,
offering an ideal platform for cavity quantum electrodynamics and supporting
the possibility of single-molecule, single-plasmon devices.Comment: 39 pages, 15 figure
The Investigation of Perchlorate/Iron Phase Mixtures as A Possible Source of Oxygen Detected by the Sample Analysis at Mars (SAM) Instrument in Gale Crater, Mars
The Sample Analysis at Mars (SAM) instrument onboard the Curiosity rover detected O2 and HCl gas releases from the Rocknest (RN) eolian bedform and the John Klein (JK) and Cumberland (CB) drill hole materials in Gale Crater. Chlorinated hydrocarbons have also been detected by the SAM quadrupole mass spectrometer (QMS) and gas chromatography/mass spectrometer (GCMS). These detections along with the detection of perchlorate (ClO4-) by the Mars Phoenix Lander's Wet Chemistry Laboratory (WCL) suggesting perchlorate is a possible candidate for evolved O2 and chlorine species. Laboratory thermal analysis of individual per-chlorates has yet to provide an unequivocal temperature match to the SAM O2 and HCl release data. These detections along with the detection of perchlorate (ClO4-) by the Mars Phoenix Lander's Wet Chemistry Laboratory suggested perchlorate is a possible candidate for evolved O2 and chlorine species. Laboratory thermal analysis of pure perchlorates has yet to provide an unequivocal temperature match to the SAM O2 and HCl release data. Analog laboratory analysis of iron mineralogy detected in Gale materials that was physically mixed with Ca- and Mg-perchlorate has been shown to catalyze lower O2 release temperatures and approach some SAM O2 release data. Instead of physical mixtures used in previous work, the work presented here utilized perchlorate solutions added to Fe phases. This technique allowed for perchlorate to come in closer contact with the Fe-phase and may more closely mimic Mars conditions where humidity can increase enough to cause deliquescence of the highly hygroscopic perchlorate phases. The objective of this work is to: 1) Utilize a laboratory SAM analog instrument to evaluate the O2 release temperatures from Mg- and Ca-perchlorates solutions applied to Fephases detetected in Gale Crate; and 2) Determine if perchlorate solutions can provide improved matches with the SAM O2 temperature release profiles
COSMIC (Cohort Studies of Memory in an International Consortium): An international consortium to identify risk and protective factors and biomarkers of cognitive ageing and dementia in diverse ethnic and sociocultural groups
BACKGROUND: A large number of longitudinal studies of population-based ageing cohorts are in progress internationally, but the insights from these studies into the risk and protective factors for cognitive ageing and conditions like mild cognitive impairment and dementia have been inconsistent. Some of the problems confounding this research can be reduced by harmonising and pooling data across studies. COSMIC (Cohort Studies of Memory in an International Consortium) aims to harmonise data from international cohort studies of cognitive ageing, in order to better understand the determinants of cognitive ageing and neurocognitive disorders.
METHODS/DESIGN: Longitudinal studies of cognitive ageing and dementia with at least 500 individuals aged 60 years or over are eligible and invited to be members of COSMIC. There are currently 17 member studies, from regions that include Asia, Australia, Europe, and North America. A Research Steering Committee has been established, two meetings of study leaders held, and a website developed. The initial attempts at harmonising key variables like neuropsychological test scores are in progress.
DISCUSSION: The challenges of international consortia like COSMIC include efficient communication among members, extended use of resources, and data harmonisation. Successful harmonisation will facilitate projects investigating rates of cognitive decline, risk and protective factors for mild cognitive impairment, and biomarkers of mild cognitive impairment and dementia. Extended implications of COSMIC could include standardised ways of collecting and reporting data, and a rich cognitive ageing database being made available to other researchers. COSMIC could potentially transform our understanding of the epidemiology of cognitive ageing, and have a world-wide impact on promoting successful ageing
A Novel Unstable Duplication Upstream of HAS2 Predisposes to a Breed-Defining Skin Phenotype and a Periodic Fever Syndrome in Chinese Shar-Pei Dogs
Hereditary periodic fever syndromes are characterized by recurrent episodes of fever and inflammation with no known pathogenic or autoimmune cause. In humans, several genes have been implicated in this group of diseases, but the majority of cases remain unexplained. A similar periodic fever syndrome is relatively frequent in the Chinese Shar-Pei breed of dogs. In the western world, Shar-Pei have been strongly selected for a distinctive thick and heavily folded skin. In this study, a mutation affecting both these traits was identified. Using genome-wide SNP analysis of Shar-Pei and other breeds, the strongest signal of a breed-specific selective sweep was located on chromosome 13. The same region also harbored the strongest genome-wide association (GWA) signal for susceptibility to the periodic fever syndrome (praw = 2.3×10−6, pgenome = 0.01). Dense targeted resequencing revealed two partially overlapping duplications, 14.3 Kb and 16.1 Kb in size, unique to Shar-Pei and upstream of the Hyaluronic Acid Synthase 2 (HAS2) gene. HAS2 encodes the rate-limiting enzyme synthesizing hyaluronan (HA), a major component of the skin. HA is up-regulated and accumulates in the thickened skin of Shar-Pei. A high copy number of the 16.1 Kb duplication was associated with an increased expression of HAS2 as well as the periodic fever syndrome (p<0.0001). When fragmented, HA can act as a trigger of the innate immune system and stimulate sterile fever and inflammation. The strong selection for the skin phenotype therefore appears to enrich for a pleiotropic mutation predisposing these dogs to a periodic fever syndrome. The identification of HA as a major risk factor for this canine disease raises the potential of this glycosaminoglycan as a risk factor for human periodic fevers and as an important driver of chronic inflammation
Improved functionalization of oleic acid-coated iron oxide nanoparticles for biomedical applications
Superparamagnetic iron oxide nanoparticles
can providemultiple benefits for biomedical applications
in aqueous environments such asmagnetic separation or
magnetic resonance imaging. To increase the colloidal
stability and allow subsequent reactions, the introduction
of hydrophilic functional groups onto the particles’
surface is essential. During this process, the original
coating is exchanged by preferably covalently bonded
ligands such as trialkoxysilanes. The duration of the
silane exchange reaction, which commonly takes more
than 24 h, is an important drawback for this approach. In
this paper, we present a novel method, which introduces
ultrasonication as an energy source to dramatically
accelerate this process, resulting in high-quality waterdispersible nanoparticles around 10 nmin size. To prove
the generic character, different functional groups were
introduced on the surface including polyethylene glycol
chains, carboxylic acid, amine, and thiol groups. Their
colloidal stability in various aqueous buffer solutions as
well as human plasma and serum was investigated to
allow implementation in biomedical and sensing
applications.status: publishe
- …