415 research outputs found

    A simple three-dimensional macroscopic root water uptake model based on the hydraulic architecture approach

    Get PDF
    Many hydrological models including root water uptake (RWU) do not consider the dimension of root system hydraulic architecture (HA) because explicitly solving water flow in such a complex system is too time consuming. However, they might lack process understanding when basing RWU and plant water stress predictions on functions of variables such as the root length density distribution. On the basis of analytical solutions of water flow in a simple HA, we developed an "implicit" model of the root system HA for simulation of RWU distribution (sink term of Richards' equation) and plant water stress in three-dimensional soil water flow models. The new model has three macroscopic parameters defined at the soil element scale, or at the plant scale, rather than for each segment of the root system architecture: the standard sink fraction distribution <b><i>SSF</i></b>, the root system equivalent conductance <i>K</i><sub>rs</sub> and the compensatory RWU conductance <i>K</i><sub>comp</sub>. It clearly decouples the process of water stress from compensatory RWU, and its structure is appropriate for hydraulic lift simulation. As compared to a model explicitly solving water flow in a realistic maize root system HA, the implicit model showed to be accurate for predicting RWU distribution and plant collar water potential, with one single set of parameters, in dissimilar water dynamics scenarios. For these scenarios, the computing time of the implicit model was a factor 28 to 214 shorter than that of the explicit one. We also provide a new expression for the effective soil water potential sensed by plants in soils with a heterogeneous water potential distribution, which emerged from the implicit model equations. With the proposed implicit model of the root system HA, new concepts are brought which open avenues towards simple and mechanistic RWU models and water stress functions operational for field scale water dynamics simulation

    Root hairs enable high transpiration rates in drying soils

    Get PDF
    What processes facilitate the ability of roots to take up water from the soil? Are root hairs advantageous for water uptake? Despite the well documented role of root hairs in phosphate uptake, their role in water extraction is controversial and the experimental data contradictory. We proposed a novel experimental method to address this question. We grew barley (Hordeum vulgare L. cv. Pallas) and its root-hairless mutant in a pressure chamber whereby the transpiration rate could be varied while monitoring the suction in the xylem. We monitored xylem water potential as function of different transpiration rate during a drying cycle. The relationship between transpiration rate and xylem suction linearly increased in wet soils and did not differ between genotypes. The slope of this increase was equal to the plant hydraulic resistance. When the soil dried the xylem water suction rapidly increased, particularly at high transpiration rates. The root-hairless mutant showed a more marked increase in the xylem suction, indicative of a lower capacity to take up water. Interestingly, the high rise in xylem suction at high transpiration rates did not quickly decrease as the transpiration rate was reduced. To quantitatively understand the relationship between transpiration rate and xylem suction and the role of root hairs, we employed a 3D root architectural model coupled with water flow in soils. The model was parametrized based on measured root architecture and soil hydraulic properties. The role of the root hairs was simulated by extending the root radius in presence of root hairs. This implicitly simulates the ability of root hairs to take up water from their tips, potential softening the drops in water potential across the rhizosphere. The simulations predicted that that as the soil dries a bigger drop in water potential develop around the roots of the root-hairless mutant. Extension of the root radius by 0.7 mm (to simulate the uptake of root hairs) reduced the drop in water potential around the roots and softened the decrease in the xylem water potential, particularly at high transpiration rates. We conclude that the root-soil interface plays a key role in root water uptake and that root hairs reduce the gradient in water potential around the roots and enable plants to sustain high transpiration rates in drying soils

    Microfossils from the late Mesoproterozoic - early Neoproterozoic Atar/EI Mreiti Group, Taoudeni Basin, Mauritania, northwestern Africa

    Get PDF
    The well-preserved Meso-Neoproterozoic shallow marine succession of the Atar/EI Mreiti Group, in the Taoudeni Basin, Mauritania, offers a unique opportunity to investigate the mid-Proterozoic eukaryotic record in Western Africa. Previous investigations focused on stromatolites, biomarkers, chemostratigraphy and palaeoredox conditions. However, only a very modest diversity of organic-walled microfossils (acritarchs) has been documented. Here, we present a new, exquisitely well-preserved and morphologically diverse assemblage of organic-walled microfossils from three cores drilled through the Atar/El Mreiti Group. A total of 48 distinct entities including 11 unambiguous eukaryotes (ornamented and process-bearing acritarchs), and 37 taxonomically unresolved taxa (including 9 possible eukaryotes, 6 probable prokaryotes, and 22 other prokaryotic or eukaryotic taxa) were observed. Black shales preserve locally abundant fragments of organic-rich laminae interpreted as benthic microbial mats. We also document one of the oldest records of Leiosphaeridia kulgunica, a species showing a circular opening interpreted as a sophisticated circular excystment structure (a pylome), and one of the oldest records of Trachyhystrichosphaera aimika and T. botula, two distinctive process-bearing acritarchs present in well dated 1.1 Ga formations at the base of the succession. The general assemblage composition and the presence of three possible index fossils (A. tetragonala, S. segmentata and T. aimika) support a late Mesoproterozoic to early Neoproterozoic (Tonian) age for the Atar/El Mreiti Group, consistent with published lithostratigraphy, chemostratigraphy and geochronology. This study provides the first evidence for a moderately diverse eukaryotic life, at least 1.1 billion years ago in Western Africa. Comparison with coeval worldwide assemblages indicates that a broadly similar microbial biosphere inhabited (generally redox-stratified) oceans, placing better time constraints on early eukaryote palaeogeography and biostratigraphy

    À la recherche des premières traces de vie

    Get PDF

    Coupled root water and solute uptake - a functional structural model

    Get PDF
    Understanding the distribution and fate of solutes in the soil-plant continuum is of interest for regulatory authorities, customers and producers. For example pesticide legalization requires certain modelling and experimental studies before the substance can be released on the market. The modelling approach used in these procedures, however, does not hold detailed information about the fate of the solute in the plant root system, but treats the root system only as a linear sink term. Uptake is determined as fraction of transpiration of the concentration in the dissolved phase. With an increasing availability of more detailed modelling approaches within the last years, we focus on a more comprehensive description of pesticide uptake by plant roots. R-SWMS is a three dimensional model for water movement in soil and plant roots (1). It also includes solute transport within the roots, which is realized as a particle tracking algorithm (2). We coupled this model to Partrace, another particle tracking algorithm that solves the convection-dispersion-equation in the soil. Active or passive solute transport across the root membrane is possible. While active transport, namely Michaelis-Menten kinetics, requires energy input from the plant, passive transport can be either driven by advective water uptake and/or by the local concentration gradient between root and soil. Root membrane conductance is determined by the lipophilic properties of the solute. Within the root system solutes are transported via the advective water flux. We further implemented microbial decay and sorption to both soil and roots. Benchmarking the coupled 3D model with an analytical solution for a single root at steady state flow conditions showed a good agreement. Using this new approach we could derive global uptake parameters in silico and compare the simulation results to data from hydroponic experiments. The detailed modelling approach enables tracking solutes in time, space and phase within the soil and root system. This novel simulation tool can be used to investigate the influence of soil properties, root system architectures, solute properties, meteorological conditions as well as plant management strategies on plant solute uptake to gain a deeper understanding of solute uptake and transport parameters

    Strong Purcell effect observed in single thick shell CdSe/CdS nanocrystals coupled to localized surface plasmons

    Full text link
    High quality factor dielectric cavities designed to a nanoscale accuracy are mostly used to increase the spontaneous emission rate of a single emitter. Here we show that the coupling, at room temperature, between thick shell CdSe/CdS nanocrystals and random metallic films offers a very promising alternative approach. Optical modes confined at the nanoscale induce strong Purcell factors reaching values as high as 60. Moreover the quantum emission properties can be tailored: strong antibunching or radiative biexcitonic cascades can be obtained with high photon collection efficiency and extremely reduced blinking.Comment: 16 pages, 7 figure

    Ultrashort pulse laser cutting of glass by controlled fracture propagation

    Get PDF
    International audienceLaser induced controlled fracture propagation has great potential in cutting brittle materials such as glass or sapphire. In this paper we demonstrate that the use of ultrashort pulse laser sources may be advantageous since it allows to overcome several restrictions of the convenient method

    A palaeoecological model for the late Mesoproterozoic – early Neoproterozoic Atar/El Mreïti Group, Taoudeni Basin, Mauritania, northwestern Africa

    Get PDF
    Reconstructing the spatial distribution of early eukaryotes in palaeoenvironments through Proterozoic sedimentary basins provides important information about their palaeocology and taphonomic conditions. Here, we combine the geological context and a reconstruction of palaeoenvironmental redox conditions (using iron speciation) with quantitative analysis of microfossil assemblages (eukaryotes and incertae sedis), to provide the first palaeoecological model for the Atar/El Mreïti Group of the Taoudeni Basin. Our model suggests that in the late Mesoproterozoic – early Neoproterozoic, the availability of both molecular oxygen and nutrients controlled eukaryotic diversity, higher in oxic shallow marginal marine environments, while coccoidal colonies and benthic microbial mats dominated respectively in anoxic iron-rich and euxinic waters during marine highstands or away from shore where eukaryotes are lower or absent
    • …
    corecore