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The geological record of protists begins well before the Ediacaran and Cambrian 

diversification of animals, but the antiquity of that history, its reliability as a chronicle of 

evolution, and the causal inferences that can be drawn from it remain subjects of debate.  

Well-preserved protists are known from a relatively small number of Proterozoic formations, 

but taphonomic considerations suggest that they capture at least broad aspects of early 

eukaryotic evolution.  A modest diversity of problematic, possibly stem group protists occurs 

in ca. 1800-1300 million year old (Ma) rocks.  1300-720 Ma fossils document the divergence 

of major eukaryotic clades, but only with the Ediacaran-Cambrian radiation of animals did 

diversity increase within most clades with fossilizable members.  While taxonomic placement 

of many Proterozoic eukaryotes may be arguable, the presence of characters used for that 

placement is not.  Focus on character evolution permits inferences about the innovations in 

cell biology and development that underpin the taxonomic and morphological diversification 

of eukaryotic organisms. 

 

Keywords: Eukaryote; fossil; Proterozoic; evolution



 

 

3

1. INTRODUCTION 

 
 
 In The Origin of Species, Charles Darwin (1859) famously fretted over the complexity 

of the oldest known animal fossils.  To account for the stratigraphic pattern he observed, 

Darwin postulated a long prior history of metazoan evolution, during which the morphological 

complexity and diversity displayed by trilobites and other Cambrian animals slowly 

accumulated.  The absence of confirming fossils was ascribed to massive failure of the pre-

Cambrian stratigraphic record. 

 Today, we recognize a relative abundance of Proterozoic sedimentary rocks, 

distributed globally.  Paleontologists have also documented Proterozoic animal fossils, but 

only from the last 30-40 million years (Ma) of the eon (Xiao & Knoll 2000; Narbonne 2005).  

On the other hand, insights from cell biology, molecular phylogeny, and developmental 

genetics have not only positioned animals within the greater diversity of eukaryotic organisms, 

but shown that the defining traits of animal life are built on a foundation of antecedent 

molecular features (e.g., Maynard Smith & Szathmáry 1995; King 2004).  

 The view that animal evolution was made possible, at least in part, by prior innovations 

in eukaryotic genetics and cell biology requires that eukaryotic life diversified before the 

advent of metazoans.  Opinions on the antiquity of the Eucarya range widely (e.g., Brocks et 

al. 1999 vs. Cavalier-Smith 2002a), but molecular clock estimates commonly suggest an 

earlier Proterozoic origin and later Proterozoic diversification of the clade (Doolittle et al. 

1996; Yoon et al. 2004, Douzery et al. 2004; in contrast, Hedges et al. 2004 proposed 

Paleoproterozoic origin and early crown group divergences).  Such conjectures obviously 

make predictions about what paleontologists should see in Proterozoic sedimentary rocks.  In 
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this paper, we review the early fossil record of eukaryotic organisms and use it to explore the 

cellular and functional evolution of protists in Proterozoic oceans. 

 
 

2. AN EARLY EUKARYOTE 
 

 How do we recognize ancient fossils as eukaryotic? A concrete example serves to 

address this question. Shuiyousphaeridium macroreticulatum is known from a large population 

of microfossils preserved in coastal marine shales of the Ruyang Group, northern China (Yan 

& Zhu 1992; Xiao et al. 1997).  The fossils are spheroidal organic vesicles characterized by a 

reticulated surface and numerous regularly spaced cylindrical processes that flare outward (ca. 

80 processes are visible around the periphery of a single specimen; Fig. 1a,b).  Vesicles range 

in diameter from 50 to 300 μm (mean, 148 μm; standard deviation, 38 μm); processes are 

hollow, 10-15 μm long, and 2-3 μm wide.  SEM examination shows that the vesicle’s outer 

surface is covered with ridges that delimit polygonal fields ca. 2 µm across (Fig. 1 c,f).  Inner 

wall surfaces show the same ornamentation, but in reverse relief – fields are visible as closely 

packed, beveled hexagonal plates (Javaux et al. 2004; Fig. 1e). TEM images further show that 

the ca. 1.5 μm wall is multilayered, with the electron-dense, homogeneous layer of organic 

plates lying above a thin electron-tenuous layer (Javaux et al. 2004; Fig. 1d). 

 Prokaryotes can be large, they can have processes, and they can have preservable 

walls.  But we know of no prokaryote that combines these three characters, and none that 

exhibits the complexity of form that light microscopy, SEM, and TEM document in 

Shuiyousphaeridium.  Many eukaryotes do exhibit these features in combination; therefore, we 

believe the most straightforward interpretation of these fossils is that they were made by a 

eukaryotic organism.  According to Cavalier-Smith (2002a, p.37), “cysts with spines or 
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reticulate surface sculpturing would probably have required both an endomembrane system 

and a cytoskeleton, the most fundamental features of the eukaryotic cell, for their 

construction.”  Shuiyousphaeridium clearly fits this description. 

Phylogenetic conjectures for Shuiyousphaeridium range from dinoflagellates (Meng et 

al. 2004) to possible fungi (Butterfield 2004), but the fossils provide little support for any 

specific attribution.  The population could represent either a stem or crown group eukaryote.  

 Radiometric dates indicate that Ruyang deposition occurred after 1600 million years 

ago (Ma) but before 1000 Ma.  Carbon isotopic stratigraphy, in turn, suggests an age greater 

than 1250 Ma (Xiao et al. 1997).  Thus, Shuiyousphaeridium was a Mesoproterozoic protist.  

 
  
  

3. PALEONTOLOGICAL ESTIMATES OF EUKARYOTIC ANTIQUITY 
 

 Other fossils corroborate the observation that eukaryotes lived in early 

Mesoproterozoic oceans.  Microfossils in the Ruyang Group include a second process-bearing 

taxon, Tappania plana (Yin 1997; Fig. 2a).  In contrast to Shuiyousphaeridium, Tappania 

displays broadly spheroidal vesicles of variable size (20 to 160 μm) that bear 0 to 20 closed, 

heteromorphic processes distributed asymmetrically on the vesicle surface (Yin 1997; Javaux 

et al. 2001).  Processes vary in length from 25 to 60 μm and uncommonly branch.   A single 

specimen shows what may be a septum between vesicle and process (Butterfield 2005a), but, 

in general, processes communicate freely with the vesicle interior.  Vesicles may also exhibit 

up to three bulbous extensions, suggestive of budding.  In addition to their Chinese 

occurrence, Tappania populations have been found in reliably dated (U-Pb zircon age of 

1492+/-3 Ma for a subtending ash bed) shales of the Roper Group, northern Australia (Javaux 
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et al. 2001), and in Mesoproterozoic successions from India (Prasad & Asher 2001) and 

Russia (Nagovitsin 2001). 

 Its irregular morphology and asymmetric distribution of processes suggest that 

Tappania was an actively growing vegetative cell or germinating structure rather than a 

metabolically inert spore (Javaux et al. 2001).  As in the case of Shuiyousphaeridium, 

Tappania’s combination of large size, preservable walls, complex processes, and possible 

budding structures finds no matches among known Bacteria or Archaea. [Readers interested in 

the proposal that Tappania was an actinomycete similar in overall structure to extant 

Kibdelosporangium (a soil-dwelling, hyphal bacterium that synthesizes no decay-resistant wall 

polymers) should consult Shearer et al. (1989).]  Butterfield (2005a) has proposed that 

Tappania plana was fungal, based on putative similarities to complex Neoproterozoic 

microfossils from Arctic Canada.  Fungal affinity is possible, but given the limited number of 

systematically informative characters, we prefer to view this fossil as problematic (and distinct 

from the Neoproterozoic population to which it has been compared).  Regardless of 

phylogenetic interpretation, however, we agree with Butterfield (2005a) that Tappania was a 

eukaryote with a complex cytoskeleton, probably preserved in an actively growing phase of its 

life cycle, and at least plausibly heterotrophic. 

Other protists in the Roper assemblage include Valeria lophostriata (Jankauskas 1989; 

Xiao et al. 1997; Javaux et al. 2003; Fig. 2d,e) and Satka favosa (Jankauskas 1989; Javaux et 

al. 2003; Fig. 2c,f), distinguished by surface ornamentation of parallel ridges uniformly spaced 

on the internal surface of the vesicle and tessellated polygonal plates up to 15 microns across, 

respectively.  Roper microfossils additionally include three leiosphaerids (simple organic-

walled spheres) with distinctively heterogeneous wall ultrastructures, as observed under TEM 
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(Fig. 2g,h).  Once again, such wall structure is common among extant protists that make 

preservable walls of comparable size and morphology, but distinct from the most likely 

prokaryotic candidates, envelope-forming cyanobacteria (Javaux et al. 2004).   

Macroscopic compressions, impressions, and casts occur globally in rocks of 

comparable age.  Ca. 1450 Ma shales of the Helena Formation, Montana contain a variety of 

carbonaceous compressions up to several cm long (Walter et al. 1976).  Of these, coiled fossils 

assigned to Grypania spiralis are most confidently interpreted as eukaryotic.  (Most other 

forms could be fortuitously shaped fragments of microbial mats.)  Grypania fossils are narrow 

ribbons, originally cylindrical, up to 13 mm long and 2 mm wide, that commonly form a 

regular coil up to 24 mm across (Walter et al 1990; Fig. 2i).  Indian populations illustrated by 

Kumar (1995) preserve a distinct mm-scale annulation that may reflect underlying cell 

structure.  These fossils are very likely of eukaryotic origin, although phylogenetic 

relationships are not well constrained.  Well preserved Grypania populations occur, as well, in 

Mesoproterozoic rocks from China (Walter et al. 1990), and Paleoproterozoic (ca. 1850 Ma) 

populations have been reported from Canada (Han & Runnegar 1992).  Samuelsson and 

Butterfield (2001) regard these latter specimens as possible composites of much smaller 

prokaryotic filaments, but the pronounced morphological regularity of specimens within a 

large population examined by one of us (AHK) convinces us that the Canadian Grypania was 

an organism, not a colony or composite.  

 The other early Mesoproterozoic macrofossil with a pursuable claim to eukaryotic 

status is Horodyskia moniliformis, known as casts and molds in sandstones from Montana and 

Western Australia (Horodyski 1982a; Grey & Williams 1990; Yochelson & Fedonkin 2000; 

Fig. 2b).  Horodyskia consisted of 1-4 mm spheroidal (less commonly ovoid, rectangular, or 
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conoidal) bodies connected by thin cylindrical strings to form uniseriate, pearl-necklace-like 

structures up to 10 cm long.  Grey and Williams (1990) drew structural analogies to articulated 

seaweeds, whereas Yochelson and Fedonkin (2000) favored comparisons with animals.  In 

fact, archeal-bacterial consortia in modern sulfur springs form mm-scale strings of beads 

(Rudolf et al. 2001), although it remains an open question whether such features would form 

or preserve in the environments inferred for Horodyskia fossils.   We interpret Horodyskia as a 

problematic macrofossil whose eukaryotic affinities are probable, but not beyond debate.   

 As discussed by Summons in this issue (Summons 2005), preserved steranes 

independently suggest that eukaryotic organisms inhabited mid-Proterozoic oceans.  If 

eukaryotes diverged only 700-800 Ma (Cavalier-Smith 2002a), then all putatively eukaryotic 

fossils and biomarkers in older rocks must be misinterpreted, and numerous mid-Proterozoic 

prokaryotes must have possessed attributes that were subsequently lost and re-evolved 

convergently by eukaryotes.  If any one of these records is correctly interpreted, eukaryotes 

existed in mid-Proterozoic oceans.   

Other fossils in mid-Proterozoic rocks could be eukaryotic, but their affinities are less 

clear.  Large (>50 μm) spheroidal microfossils are widely distributed in Mesoproterozoic 

shales.  As noted above, a few of these are known to have walls with complex ultrastructure of 

types best known from eukaryotes, but most have unknown wall structure and could, in 

principle, be preserved envelopes of colonial cyanobacteria (Knoll 1996).  Similarly, 

longitudinally striated carbonaceous tubes up to 150 μm in diameter and more than a 

millimeter long found in shales of the Roper Group could be eukaryotic, but this interpretation 

remains tentative.   
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 Can we extend the eukaryotic fossil record backward into the Paleoproterozoic or 

beyond?  The oldest acritarchs (a collective term applied by paleontologists to closed, organic 

walled microfossils of uncertain systematic affinities) with regular ornamentation are 

populations of the corduroy-like Valeria preserved in shales of the Mallapunyah Formation, 

northern Australia, closely constrained by radiometric ages to about 1650 Ma (Javaux et al. 

2004), and in the Changcheng Group, northern China, constrained to be >1683+/-67 Ma and 

<1780+/-20 Ma (Yan & Liu 1993; Li et al.1995; Wan et al. 2003).  Changcheng assemblages 

also include large (up to 237 μm) unornamented acritarchs, some of which display regular 

medial splits, similar to those formed during excystment of younger protists (Yan & Liu 

1993).  The splits are both common and regularly equatorial, favoring a eukaryotic 

interpretation. Cyanobacterial envelopes can split in regular patterns (Waterbury & Stanier 

1978), however; so the medially split leiosphaerids in Changcheng rocks are conservatively 

interpreted as possibly but not unambiguously eukaryotic. Comparable uncertainty attends 

uniseriate filaments up to about 100 μm wide, also found in Changcheng shales (Yan & Liu 

1993).  

 Carbonaceous compressions in late Paleoproterozoic shales from China have been 

interpreted as seaweeds, with specimens from the 1600-1700 Ma Tuanshanzi Formation 

specifically attributed to the Phaeophyta (Zhu & Chen 1995).  Examination of Tuanshanzi 

structures in outcrop by one of us (AHK) suggests that the features in question can 

alternatively be interpreted as rare, fortuitously shaped fragments deposited among many 

irregular mat shards.  Lamb, Awramik, and Zhu (2005) have drawn similar conclusion about 

macroscopic compressions in the older Changzhougou Formation.  Steranes in 2780 Ma shales 

from Western Australia have been interpreted as evidence that stem eukaryotes diverged early 
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in Earth history (Brocks et al. 1999), but a general paucity of well-preserved microfossils 

precludes independent morphological inferences about eukaryotic biology prior to about 1800 

Ma.   

 In summary, late Paleoproterozoic and early Mesoproterozoic rocks preserve evidence 

for a moderate diversity of preservable eukaryotic organisms.  This evidence includes cell 

walls without surface ornament (but with complex ultrastructure) and walls with regularly 

distributed surface ornamentation, with asymmetrically arranged processes that appear to 

reflect active cell growth, and with numerous symmetrically arranged processes.  Collectively, 

these fossils suggest that eukaryotes not only existed in mid-Proterozoic oceans, but possessed 

flexible membranes and cytoskeletons capable of directing cell remodeling and surface 

morphology (Javaux et al. 2001; see below).      

  
  
4. DISPARITY AND DIVERSITY AMONG LATER PROTEROZOIC EUKARYOTES  

 
(a) Phylogeny 

 
 Phylogenetic attribution and diversity history are enduring issues in paleontology, no 

less so in Proterozoic than in Phanerozoic research.   Paleobiological studies of plant and 

animal evolution show that while reliable phylogenetic placement of crown group fossils can 

be straightforward, interpretation of early diverging stem groups is not.  Fossils can 

frustratingly display only a small subset of the characters that collectively distinguish crown 

groups and, even worse, can exhibit character combinations not observed in any extant clade.  

The problem is all the more difficult for early eukaryotes, as only selected features (mostly cell 

walls) are candidates for preservation, and preserved fossils can be undiagnostically simple.   
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 Many, perhaps most, preserved Proterozoic protists cannot be assigned with 

confidence to any specific branch of the eukaryotic tree (to the extent that we know it).  A few, 

however, preserve diagnostic features of life cycle and morphology that support reasonable 

systematic interpretation.  (The formation of preservable parts is, itself, a character of interest, 

as many protists synthesize no preservable walls or cysts during their life cycle.)  Butterfield 

(2000) has marshaled a strong case for the close phylogenetic relationship of the fossil 

Bangiomorpha pubescens (Fig. 3c) to bangiophyte red algae.  Bangiomorpha bears a 

superficial resemblance to uniseriate filamentous cyanobacteria, but as Butterfield (2000) 

points out, it differs in a number of key characters.  Bangiomorpha filaments have cellularly 

differentiated holdfasts and zones of discoidal cells that expand and divide radially in several 

planes to produce distinctive wedge-shaped cells.  Such features are unknown in 

cyanobacteria, but occur together along with other characters displayed by Bangiomorpha in 

extant bangiophyte red algae (Butterfield et al. 1990; Butterfield 2000).  Moreover, 

taphonomic features displayed by Bangiomorpha are similar to those of other early 

eukaryotes, but different from those of filamentous cyanobacteria known from the Proterozoic 

fossil record.  Bangiomorpha displays three-dimensionally competent preservation of outer 

and inner walls, with no cytoplasmic preservation, whereas cyanobacterial filaments with 

sheaths generally show competent three-dimensional preservation of the sheath, but partial or 

complete collapse of the cells inside (Bartley 1996).  Published radiometric dates constrain 

Bangiomorpha only to the interval 1267+/-2 to 723+/-3 Ma, but an unpublished Pb-Pb date of 

1198+/-24 Ma and physical stratigraphic relationships strongly suggest that the fossils’ age 

lies close to the lower radiometric boundary (Butterfield 2000).      
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 Latest Mesoproterozoic (>1005+/-4 Ma; Rainbird et al. 1998) microfossils from the 

Lakhanda Group, Siberia, contain several additional populations of coenocytic to multicellular 

filaments whose morphologies and dimensions suggest eukaryotic origin (Herman 1990; Fig. 

3f).  Principal among these are fossils assigned to Palaoevaucheria clavata and other form 

taxa that appear to preserve vegetative and reproductive phases of a heterokont protist 

comparable to the extant xanthophyte alga Vaucheria (Jankauskas 1989; Herman 1990).  

Vaucheria-like populations preserving several life cycle stages also occur in the 750-800 Ma 

Svanbergfjellet Formation, Spitsbergen (Butterfield 2004).  Latest Meosoproterozoic and early 

Neoproterozoic acritarchs (Fig. 3h) continue the record of moderate diversity established 

earlier, although some taxa characteristic of these younger assemblages have not, to date, been 

found in older rocks (Knoll 1996).   

 By 750-800 Ma, the most diverse fossil assemblages contain an increased diversity of 

acritarch and other protistan morphotypes (e.g., Butterfield et al. 1994; Butterfield and 

Rainbird 1998), including small branched structures interpreted as siphonocladalean green 

algae (Butterfield et al. 1994); vase-shaped structures interpreted as both filose and lobose 

testate amoebae – and, therefore, as both amoebozoan and cercozoan protists (Porter et al. 

2003; Fig. 3i); remarkable spheroidal fossils from which numerous anastomosing cellular 

filaments arise, interpreted as possible fungi (Butterfield 2005a; Fig. 3a,b); and a moderate 

diversity of other colonial to multicellular eukaryotes with less certain systematic affinities 

(Butterfield et al. 1994; Butterfield 2005b).  Collectively, carefully studied microfossil 

assemblages support the hypothesis that the later Mesoproterozoic and early Neoproterozoic 

was a time of major clade divergence within the Eucarya, although diversity within most 

major clades remained relatively low (see Porter 2004 for a recent review).   
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(b) Diversity 

  
 A decade ago, several labs published attempts to divine diversity history from the 

Proterozoic acritarch record (Zang & Walter 1992; Schopf 1992; Knoll 1994; Vidal & 

Moczydlowska 1997).  Those that included all available data agreed in depicting a eukaryotic 

record with modest Mesoproterozoic diversity, higher but still relatively low diversity in the 

Neoproterozoic, an early Ediacaran (ca. 580-560 Ma) spike in taxonomic richness followed by 

low late Ediacaran taxonomic diversity, and, then, marked Cambrian diversification.  These 

studies have been criticized on several counts, including poor taxonomy, incomplete sampling, 

and misinterpretation of inferred ecology, especially for acritarchs (Butterfield 2005a,b).  Most 

early analyses accepted that Proterozoic acritarchs were, like those in Paleozoic rocks, largely 

the reproductive cysts of planktonic algae.  We agree with Butterfield (2005a,b), however, that 

Proterozoic acritarch assemblages include, and in some cases may be dominated by, vegetative 

remains of organisms that were heterotrophic rather than photosynthetic, and benthic rather 

than planktonic.  Taxonomic issues are being resolved by continuing research, bolstering our 

belief that meaningful if qualitative comparisons can be made among assemblages and 

stratigraphic intervals.  

 In studies of Phanerozoic diversity, the problem of sampling in compilations of total 

diversity has been addressed in part by comparison with records of taxonomic richness for 

individual assemblages, broad proxies for community diversity that are not subject to many of 

the biases thought to influence global samples (Bambach 1977).  Fig. 4 (see also Appendix) 

shows a comparison of eukaryotic diversity for a selection of well preserved and well studied 

Proterozoic to Early Cambrian fossil assemblages. Consistent with discussions in the 

preceding section, we have included all non-metazoan fossils whose organization, 
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ornamentation, and/or ultrastructure suggest a likely eukaryotic origin.  The most problematic 

fossils included in our compilation are leiosphaerids, spheroidal acritarchs without 

distinguishing ornament.  In some cases (e.g., Butterfield et al. 1994; Javaux et al. 2004), TEM 

observations support a eukaryotic origin for these fossils, but ultrastructural data are lacking 

for most Proterozoic leiosphaerids.  By including only leiosphaerids with a diameter greater 

than 50 µm, we have likely excluded smaller protistan fossils and may, as well, have included 

cyanobacterial envelopes.  Our compilation segregates leiosphaerids from other presumable 

eukaryotes, enabling readers to track different fossil morphotypes through time.  

 From these assemblages, we infer the following: 

 1. In late Paleoproterozoic to early Mesoproterozoic  rocks (ca. 1600-1300 Ma), 

eukaryotic biology is recorded by a modest diversity of macroscopic fossils and preserved cell 

walls, including forms with complex ultrastructure, regular ornamentation, and/or cylindrical 

processes.  These fossils may but need not include crown group eukaryotes. 

 2.  Late Mesoproterozoic and early Neoproterozoic (ca. 1300-720 Ma) assemblages 

continue the record of modest acritarch diversity, although many taxa found in rocks of this 

age differ from those in earlier assemblages.  Unornamented and ornamented sphaeromorphs, 

some showing evidence of binary division or budding, are common. Acritarchs with 

asymmetrically placed processes (in some cases reflecting actively growing cells; Knoll et al. 

1991; Butterfield et al. 1994; Butterfield 2004) form a taxonomically and numerically 

subordinate part of assemblages, and acritarchs with symmetrically distributed processes are 

uncommon.  Read literally, the published record suggests that acritarch diversity was a bit 

higher in the later part of this interval (ca. 800-720 Ma) than in the earlier part (Fig. 4b).  

Certainly, the later record includes a greater diversity of non-acritarchous eukaryotes, 
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especially vase-shaped protists and microscopic multicellular protists (Fig. 4d).  Fossils from 

this interval include the earliest recognizable representatives of extant eukaryotic clades, 

including red algae, green algae, heterokonts, amoebozoans, cercozoans, and possibly fungi 

(Porter 2004).  Macroscopic compressions document a small diversity of cm-scale blades and 

closed tubes (Du & Tian 1985; Hofmann 1992; Fig. 4c). 

 The curtain drops on these assemblages with the onset of Sturtian glaciation, and it 

rises again on a substantially different biota only after the Marinoan glaciation ca. 632 Ma.  At 

least some earlier Neoproterozoic morphotypes survived the Sturtian ice age (Allison & 

Awramik 1989; redated by Kaufman et al. 1992), but only a few microfossil assemblages 

unambiguously document marine life between the major glaciations. Whether this reflects 

persistently unfavorable environments (e.g., James et al. 2004) or bad luck in sampling is, at 

present, unclear.   

 3.  Early Ediacaran (632 to ca. 580-550 Ma) assemblages display a notable increase in 

observable diversity, and the composition of these assemblages also shifted markedly -- for the 

first time, populations with symmetrically distributed processes dominate acritarch biotas 

(Zang & Walter 1992; Zhang et al. 1998; Moczydlowska et al. 1993; Grey 2005; Fig. 4a,b).  

Macroscopic compressions in coeval or slightly younger rocks similarly record a much higher 

diversity of form, including a variety of seaweeds and possible animals (Steiner 1994; Xiao et 

al. 2002; Fig. 4c).  Macrosocopic algae include the first dichotomously branching thalli (Fig. 

3d), as well as anisotomously branching forms.  Animals are independently known from 

Ediacaran phosphorites, carbonates and sandstones (Xiao & Knoll 2000; Grotzinger et al. 

2000; Narbonne 2005).  Interestingly, late Ediacaran (ca. 550-542 Ma) acritarch assemblages 

known to date display none of the acanthomorphic diversity so obvious in preceding deposits 
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(Fig. 4a).  Unornamented spheroids, commonly abundant and including forms several hundred 

microns in diameter, dominate microfossil assemblages (Germs et al. 1986; Jankauskas 1989; 

Burzin et al. 1997).   

 4.  Cambrian and Ordovician rocks record renewed diversification of ornamented and 

symmetrical process-bearing acritarchs – now, we believe, properly ascribed to cyst-forming 

algae (and, perhaps, heterotrophic dinoflagellates).  This two-step increase parallels the 

Cambrian and Ordovician radiations of marine animals (Knoll 1994; Vidal & Moczydlowska 

1997; Fig. 4a,b), as well as the diversification of skeletal protists, including both 

foraminiferans and radiolarians (see references in Knoll 2003a). 

 How reliable is this record as a chronicle of evolution?  This question deserves fuller 

treatment than can be provided here, but the short answer is, “Reasonably, with a few 

caveats.”  Acritarchs comprise the most abundant and widely distributed record of Proterozoic 

protists, and the assemblages noted for the five intervals outlined above each occur in at least 

four different basins on multiple continents, preserved as both compressions in shale and silica 

permineralizations (and, in Ediacaran successions, phosphorite).  The basic trends outlined for 

acritarch morphology and diversity appear to be broadly predictive and, therefore, reflective of 

evolutionary history.  The same is true of macroscopic fossils.  Early Mesoproterozoic 

assemblages characterized by Grypania and Horodyskia, an earlier Neoproterozoic 

assemblage dominated by the morphotaxa Tawuia and Longfengshania, diverse Ediacaran 

macroalgal assemblages, and Ediacaran to Cambrian animal assemblages occur in 

stratigraphically predictable fashion.  Moreover, some of the macroalgae documented in early 

Ediacaran shales also left a conspicuous signature in sandstones, decreasing the probability 

that older records would be missed.  For example, the cm-scale, originally fluid-filled 
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macrosphere Beltinellaformis is preserved in Ediacaran but not much older sandstones as casts 

and molds that commonly cover bedding planes (Xiao et al. 2002).  Similarly, concentric 

grooves made by basally attached, semi-rigid algae or animals are well known from Ediacaran 

but not older bedding surfaces (Jensen et al. 2002).  We accept the large diversity increase 

observed in macroscopic compressions as evidence for early Ediacaran algal diversification.   

 A similar case can be made for the three-dimensionally preserved vase-shaped protists 

described from ca. 800-700 Ma rocks.  Taxonomic diversity in this class of fossils is best 

gauged from exceptionally preserved assemblages in early diagenetic dolomite concretions 

within Grand Canyon shales (Porter et al. 2003), but because of the rigid nature of their tests, 

vase-shaped protists are commonly preserved as casts in mid-Neoproterozoic carbonates and 

cherts.  Indeed, such casts can be among the most abundant fossils in these rocks (e.g., Knoll 

& Calder 1983), but they have not yet been reported from older successions.   

 The fossils that are most problematic in this regard -- frustratingly so, as they provide 

some of our best information on phylogeny -- are the multicellular fossils found as 

microscopic compressions in shales and, less commonly, as permineralizations in chert 

(Herman 1990; Butterfield 2000, 2004a, 2004b, 2005).  The best argument we can muster here 

is that such microfossil complexity has been found repeatedly in late Mesoproterozoic and 

Neoproterozoic biotas but not in older assemblages that appear to be comparably well 

preserved.  Once again, the record read literally may well provide a historical chronicle of 

early eukaryotic divergence, but we stress that the record as currently known provides 

minimum estimates of character evolution and clade divergence that may well change with 

continuing discovery.      
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5. A FUNCTIONAL APPROACH TO EARLY EUKARYOTIC FOSSILS 

 
 As summarized in the preceding section, Proterozoic protists included simple, 

unornamented unicells; morphologically complex and elaborately ornamented vesicles; 

clusters (colonies?) of uniform cells; uniseriate filaments, both branched and unbranched; and 

three-dimensionally complex multicellular organisms displaying cellular differentiation.  For 

many of these fossils, phylogenetic placement is difficult because few characters ally fossil 

populations with extant clades.  We can sidestep these issues by focusing on the characters 

themselves, and not on any implied phylogenetic affinity.  For example, Tappania may or may 

not be related to fungi, but it inarguably displays an asymmetrical arrangement of processes.  

Similarly, one might debate the attribution of Bangiomorpha to the red algae, but it 

demonstrably exhibits cell differentiation.  This suggests an independent, “taxonomy-free” 

avenue of inquiry focused on function, development, and the cell biological processes that 

underlie these features.   

 

(a) Cell morphology and cytoskeletal complexity 

As previously noted, populations of the Mesoproterozoic protist Tappania uniformly 

display processes on one side of the preserved vesicle but not the other, as well as distinctly 

and asymmetrically positioned bud-like emergences.  The range of variation exhibited by these 

populations, in turn, strongly suggests that Tappania was able to modify cell shape during 

vegetative growth or zoospore germination (Javaux et al. 2001).  Living cells with similar 

attributes establish polarity and modify cell shape via cytoskeletal organization (and 

reorganization).  Shuiyousphaeridium macroreticulatum further documents the capacity of 

some Mesoproterozoic cells to construct elaborate processes at regular sites across the cell 
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wall, a function that must reflect localized secretion of wall materials and, therefore, 

intracellular mapping and molecular transport.  Physical processes not necessarily related to 

cell biology can result in regular, self-organized structures (e.g. Li et al 2005), but the 

irregularities and apparent remodeling of cell shape exhibited by Tappania processes argue 

against formation purely by macromolecular self assembly.  Other cell wall morphologies 

recorded by Proterozoic protists -- including equatorial arrangement of processes 

(Germinosphaera fibrilla; Butterfield et al. 1994; Butterfield 2005a) and unipolar localization 

of a large aperture (vase-shaped tests; Porter et al. 2003) – also reflect the capacity to localize 

structures to discrete positions in the cell, providing additional evidence for sophisticated 

eukaryotic cell organization well before the appearance of metazoans.  Insofar as flexible 

membranes and a functioning cytoskeleton are fundamental to the eukaryotic condition 

(Cavalier-Smith 2002b), it is not surprising that the earliest fossils recognizable as protists 

should reflect such features of cell biology.    

 

(b) What does filamentation tell us? 

 Filament construction requires that cell division occur consistently along a single axis 

or that cell growth proceed regularly at a point opposite (or otherwise specified) to the 

conjunction of two cells.  Both processes require that the cell be able to map locations within 

itself relative to the cells to which it is attached (and not solely relative to environmental cues).  

Thus, filament formation requires both endogenous intracellular mapping to establish polarity 

and communication within and between adjacent cells.  The cell polarization evident in 

asymmetrically distributed processes of Tappania need not reflect endogenous signaling, as 
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the spatially heterogeneous growth of its processes could, in principle, have been induced by 

an exogenous signal.   

 Like the vegetative expansion of Tappania processes, growth of multicellular filaments 

requires a means of molecular transport to specific locations – i.e., polarized transport.  It is 

possible that materials used for differential growth moved by simple diffusion, and that 

localized growth in older Proterozoic cells reflects anabolic enzymes attached to the cell 

cortex.  However, the ubiquity of the proteins used for intracellular transport argues for the 

antiquity of this process within the Eucarya -- the phylogenetic breadth of organisms known to 

contain genes coding for actin, myosin (Richards & Cavalier-Smith 2005), tubulin (Baldauf 

2000), kinesin (Lawrence et al 2002), and dynein (Asai & Wilkes 2004) suggests the 

microtubule/kinesin/dynein and F-actin/myosin systems for intracellular transport evolved 

early in eukaryotic evolution.    

 Uniseriate filaments interpreted as eukaryotes occur in later Mesoproterozoic rocks 

(Herman 1990; Butterfield 2000) and may be represented by the late Paleoproterozoic 

(1780±20--1683±67 Ma) filament Qanshania (Han & Liu 1993). There is no reason to believe 

that any of the filamentous protists preserved in Proterozoic rocks were directly ancestral to 

animals.  Rather, such fossils document the early evolution of a molecular capacity for simple 

multicellularity exploited through time by multiple clades.      

 Compared to simple filaments, branched structures allow more effective exploration 

for and exploitation of environmental resources.  For example, fungi grow more densely in 

richer growth media (Ritz 1995) due to increased branching that allows more effective space 

filling and, therefore, increased absorptive capacity.  Branched forms require a more 

sophisticated intracellular spatial organization because cellular locations must be mapped in a 
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way that is geometrically more complex than simply “opposite prior site of growth or 

division.”  Branched filaments evolved in the Eucarya no later than ca. 1000 Ma (Herman 

1990) and were present in several clades by 800-720 Ma (Butterfield et al. 1994; Butterfield 

2005a).  The oldest branching structures of any type observed to date in Proterozoic protists 

are the bifurcating processes of nearly 1500 Ma Tappania (Javaux et al. 2001).        

 

(c) Cellular differentiation 

 The question of cellular differentiation has long intrigued biologists.  Even unicellular 

eukaryotes, such as Saccharomyces cerevisiae, undergo cellular differentiation, and the 

complex genetic interactions that bring about this differentiation are well studied (Alberts et al 

2004).  The late Mesoproterozoic red alga Bangiomorpha had at least three distinct cell types.  

Palaeovaucheria also exhibits cellular differentiation (Butterfield 2004), and complex 

multicellular structures found in ca. 820-780 Ma rocks from arctic Canada (Butterfield 2005a; 

Fig. 3a,b) appear to have had two distinct developmental programs, one for the large central 

cell and one for the filamentous mesh that surrounds it.   

 

(d) Multicellularity in three dimensions 

 Three-dimensionality is prerequisite for tissue level organization.  It can create an 

internal environment in which an outer layer of cells can protect interior cells from 

environmental challenges, and it also makes possible the mechanical support needed to 

construct large structures. 

 To build three-dimensionally organized structures that are mechanically stable (as 

opposed to loose tangles of filaments or consortia of cells), cells must be able to adhere to each 
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other via cell wall fusion or cell membrane adhesion.  Indeed, cells must adhere to neighbors 

that are not the immediate products of a given division, requiring a sophisticated level of cell-

cell communication that enables individual cells to accept adherence to their kin.  

Mesoproterozoic and early Neoproterozoic macrofossils, such as Grypania and 

Longfengshania, may reflect a molecular capacity for tissue formation, but in the absence of 

anatomical data, this is hard to demonstrate (or refute). The first clear example of three-

dimensional organization and cell wall fusion is the complex “Tappania” fossils reported by 

Butterfield (2005a) from 820-780 Ma rocks in Canada (Fig. 3a,b).  Diverse fossils in 

Ediacaran rocks document tissue-grade three-dimensionality in florideophyte red (Xiao et al. 

2004) and other (Xiao et al. 2002) algae, discrete apical and intercalary meristems in diverse 

seaweeds (Xiao et al. 2001), and, of course, the complex ontogenies and astogenies of early 

macroscopic animals (Narbonne 2005).     

 

(e) More cell-cell communication in the Proterozoic? 

 Populations of Eosaccharomyces ramosus from the >1005+/-4 Ma Lakhanda Suite, 

Siberia, formed a distinctive net-like pattern in which cells were oriented along anastomosing 

strands – not unlike cell arrangements in aggregating slime molds today (Herman 1990). Such 

population-scale pattern formation suggests a system of biochemically mediated behavior in 

which individual cells modified their movement and/or growth in response to molecular cues 

from conspecific neighbors (Knoll 1992). This, in turn, implies a ligand-receptor system.  Of 

course, the inference that Proterozoic fossils had sexual life cycles, argued specifically for 

Bangiomorpha on morphological grounds (Butterfield 2000), implicitly accepts a system of 

communication and behavioral response among gametes.  In Eosaccharomyces, however, 
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behavioral responses are preserved directly in the spatial distribution and orientation of cells 

within local populations.  

 
(f) Relationship to observed evolutionary pattern 

 

 From the forgoing, one can draw two conclusions.  First, eukaryotic fossils in 

Proterozoic rocks, long interpreted in terms of morphology and phylogeny, also permit 

inferences about the evolution of cell biology.  Second, consistent with inferences drawn from 

comparative biology, fossils suggest that the cellular and molecular capacity for generating 

morphological diversity in protistan unicells and filaments evolved early in their evolutionary 

history.  If correct, then other factors must be invoked to explain the long interval between the 

first appearance of eukaryotes in the geological record and their observed taxonomic radiation 

in latest Proterozoic to Cambrian oceans. 

 
 

6.  CONTROLS ON EARLY EUKARYOTIC DIVERSIFICATION 
 

 In principle, genetics, ecology, or environment could govern the pattern of protistan 

evolution inferred from Proterozoic fossils.  Genetic facilitation is most difficult to assess, not 

least because the genetic determinants of morphology in most single-celled eukaryotes and 

algal thalli remain poorly understood.  Nonetheless, observations reviewed in the preceding 

section suggest that the basic molecular mechanisms that control morphogenesis in unicellular 

and simple multicellular eukaryotes were in place fairly early in the Proterozoic Eon.  Thus, 

without questioning the role of genetic innovation in the evolution of animals and complex, 

tissue-grade algae, it seems likely that early Ediacaran diversification of acritarchs and 
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macrophytes must reflect, at least in part, influences from ecology and/or environmental 

change.  

 Because eukaryotic phytoplankton and radiolarians diversified in step with marine 

invertebrates during the Cambrian and Ordovician periods, ecology can be justifiably invoked 

as a major driver of protistan evolution in the age of animals (Knoll 1994; Butterfield 1997).  

Butterfield (1997) proposed grazing by newly evolved mesozooplankton as a governing 

influence on the proliferation of ornamented and process-bearing acritarchs, although it must 

be remembered that the acritarch forms most common in Cambro-Ordovician rocks are cysts 

(Strother 1996), many of which may have rested on the sea floor like those of modern 

dinoflagellates (Dale 1983).  Diversity increase and a pronounced coeval increase in rates of 

evolutionary turnover (Knoll 1994) could reflect the further influences of metazoan grazing 

and excretion on water mass heterogeneity at the appropriate spatial scale, or checks by 

grazers on the population growth of superior algal competitors.  To the extent that nutrient 

depletion induces cyst differentiation in planktonic algae, increased patchiness of nutrients 

could also enhance the selective advantage of life cycles with resting stages -- imparting a 

spatial heterogeneity to marine phytoplankton that might, itself, facilitate diversification.  

Ecologists continue to debate the physical and biological controls on phytoplankton diversity 

in modern environments (e.g., Grover & Chrzanowski 2004), so it is not surprising that the 

nature of animal-protist interactions in Cambro-Ordovican seas remains incompletely 

understood. Argued in reverse, the absence of macroscopic grazers might explain the low 

diversity and long stratigraphic ranges of most Proterozoic acritarchs (Peterson & Butterfield 

2005). 
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 Where is the line of demarcation between these two states of the marine ecosystem?  

Peterson and Butterfield (2005) drew it at the beginning of early Ediacaran acritarch radiation, 

in the wake of global Marinoan glaciation.  Post-Marinoan rocks contain the first acritarch 

assemblages dominated by forms with abundant, symmetrically arrayed spines, features 

interpreted by Peterson and Butterfield (2005) as mechanical defenses against predation by 

newly evolved benthic bilaterians.   This explanation is plausible, although spiny Ediacaran 

acrtiarchs antedate the first geological records of motile bilaterians by as much as 25-50 

million years, and the entire assemblage of spiny acritarchs disappears by the time that 

bilaterian trace fossils enter the record.  The systematic relationships of early Ediacaran 

acritarchs remain unclear, but given their size, (in some cases) multicellular contents, and 

strong morphological similarity to egg hulls made by living animals (van Waveren & Marcus 

1993), these distinctive fossils could well provide direct rather than exclusively indirect 

evidence for early animal diversification (see Yin et al. 2004).  With less conviction, grazing 

arguments might also be applied to the early Ediacaran radiation of macroscopic seaweeds.   

 Whatever the nature of specific interactions, there can be little doubt that emerging 

animals influenced the continuing evolution of protists in late Neoproterozoic and Cambrian 

oceans.  Does this obviate any role for environmental change?  Of course not.  Environmental 

and ecological facilitation are not mutually exclusive, and so ecological plausibility does not 

constitute evidence against environmental facilitation (pace Peterson & Butterfield 2005).  

Hypotheses of environmental influence may be correct or incorrect, but their tests lie in the 

precise stratigraphic resolution of geochemical and paleobiological data. 

 The dawning age of animals is associated with several environmental events of limited 

duration and one long term state change in the Earth system.  Two global ice ages (and at least 
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one additional, regionally important glaciation; Halverson et al. 2005) and a brief but 

pronounced C-isotopic event coupled to transient shallow water anoxia near the Proterozoic-

Cambrian boundary (Amthor et al. 2003) could each have influenced evolution by removing a 

large proportion of pre-existing eukaryotic biomass, creating in their wakes permissive 

ecologies in which novel (and not necessarily fitter) mutants generated by surviving 

populations could persist under low selective pressure, providing raw materials for 

evolutionary innovation (Knoll 2003b).  We have only limited knowledge of life after the 

Sturtian (ca. 720-710 Ma) ice age, but there is evidence of evolutionary innovation in the 

wakes of both the Marinoan (ca. 650-635 Ma) ice age and the Proterozoic-Cambrian boundary 

event.       

 There is also widespread agreement that oxygen levels rose in the surface ocean and 

atmosphere during the Neoproterozoic Eon (e.g., Canfield & Teske 1995; Catling & Claire 

2005; Holland 2005).  Evidence from S isotopic fractionation (Shen et al. 2003), secular 

variation in S isotopes (Kah et al. 2004), and sulfate abundances in carbonate lattices (Gellatly 

& Lyons 2005) collectively indicate that sulfate levels in Mesoproterozoic oceans were lower 

than today’s by about an order of magnitude, implying PO2 lower than at present.  Fe 

speciation chemistry (Shen et al. 2003), Mo isotopes (Arnold et al. 2003), and biomarker 

profiles that document anoxygenic phototrophs in open waters (Brocks et al. 2005) 

independently suggest that sulfidic conditions were easily induced in the oxygen minimum 

zones (if not all deep waters) of Mesoproterozoic oceans. 

 The unresolved question is when oceans transited to a more modern state.  A single 

sample from ca. 750 Ma black shales in the Grand Canyon exhibits the increased S-isotopic 

fractionation associated with oxygenic water columns (Canfield & Teske 1995), but marine 
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shales do not routinely preserve this biogeochemical signal until after 580 Ma (Hurtgen et al. 

2004), suggesting a potentially close temporal relationship between the rise of oxygen and the 

appearance of both macroscopic animals and seaweeds.  Rising oxygen might have influenced 

algal evolution in two ways – indirectly via the origin and diversification of large bilaterian 

animals and directly by the effects of redox change on nutrient status (Anbar & Knoll 2002).  

Unfortunately, no known geochemical process trips a recordable mineralogical or 

biogeochemical switch at PO2 levels that constitute physiological barriers to large size and 

motility in animals. Complicating the issue further, there is no reason to believe that oxygen 

levels trended monotonically through the Proterozoic Eon.  The presence of iron formation in 

successions associated with Sturtian glaciation suggests to some (e.g., Canfield 1998; Holland 

2005) that oxygen levels may have been especially low during times of Neoproterozoic 

climatic extremes. 

 In the end, all hypotheses to explain observed patterns of protistan evolution require 

better stratigraphic data:  geochemical data that illuminate short term climatic and 

biogeochemical events as well as long term redox change, and fossil and biomarker data that 

document the first appearances of protists and ecologically important animals.  Better data, in 

turn, will require improved models -- oceanographic, paleophysiological and ecological – to 

integrate paleobiological and paleoenvironmental observations.  We predict that a mature 

understanding of protistan evolution will implicate genetics, ecology, and geophysical change 

rather than single any one of them out as a solitary driver.      

 
7. CONCLUSIONS 

 
 Much has been learned about Proterozoic life in the oceans, but, clearly, much remains 

to be learned.  Straightforward discovery played a principal role in the past two decades of 
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research, and it will likely continue as the main source of new understanding for some time to 

come.  Particularly important will be the elucidation of well preserved assemblages from post-

Sturtian but pre-Marinoan rocks and from Paleo-Mesoproterozoic successions.   

 New ways of looking at existing fossils will also loom large, however; TEM and 

microchemical techniques that can elaborate the physical and chemical composition of 

individual fossils will increasingly provide insights into phylogenetic relationships of early 

eukaryotes (e.g., Arouri et al. 1999; Talyzina 2000; Javaux et al. 2004; Marshall et al. 2005; 

Schopf & Kudryavtsev 2005).  Finally, improved geochemical techniques for tracking the 

redox history of sea water, coupled with new and better insights into protistan genetics and 

ecology, will provide badly needed context for understanding the major changes recorded by 

eukaryotic fossils in Ediacaran and Early Cambrian rocks.  The same questions that animated 

Proterozoic paleontological research a decade ago animate it now, but the data are richer and 

the answers are getting better.  The same will undoubtedly be true a decade hence.    
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     Figure Captions 
 
 
 
Figure 1. Shuiyousphaeridium macroreticulatum from the Mesoproterozoic Ruyang Group, 

China. (a) light microphotograph showing specimen with numerous regularly spaced 

cylindrical processes that flare outward; (b-c, e-f) SEM images showing (b) whole specimen, 

with inset showing details of process morphology, (c) outer wall surface covered with ridges 

that delimit granular polygonal fields, (e) wall reticulation, and (f) inner wall surface of closely 

packed, beveled hexagonal plates;  (d) TEM image showing the two appressed walls of a 

single specimen – note multilayered wall comprising a thick electron-dense homogeneous 

layer of organic plates (ii) between an outer layer of debris and processes – note base of 

process at bottom left of center (iii) and a thin electron-tenuous layer (i) that lines the inner 

side of plates. Scale bar in a = 57 µm for a, 50 µm for b (20 µm for inset), 1.2 µm for c and e, 

0.5 µm for d, and 2.5 µm for f. 

 
 
 
Figure 2.  Diversity of late Paleoproterozoic to early Mesoproterozoic eukaryotic fossils. 

(a) Tappania plana, from the early Mesoproterozoic Roper Group, Australia; (b) Horodyskia 

moniliformis, from the Mesoproterozoic Bangemall Group, Western Australia; (c,f) Satka 

favosa, from the Roper Group, (c) showing the wall construction of hexagonal plates, shown 

under SEM in (f); (d,e) Valeria lophopstriata, showing ornamentation of closely spaced 

parallel ridges on the inner wall surface in SEM (d) and light microscopic (e) view; (g,h) 

Leiosphaeridia sp., an unornamented spheroidal acritarch, with a complex wall composed of 

two electron-dense, homogeneous layers (i) that sandwich a thick central layer with electron-

dense, porous texture (ii) visible in TEM cross-section (h); Grypania spiralis, a coiled 
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macrofossil compression from the Mesoproterozoic Gaoyuzhuang Formation, China (courtesy 

of M. Walter). Scale bar = 40 µm for (a), 7.8 mm for (b), 35 µm for (c), 4µm for (d), 15 µm 

for (e), 7.5 µm for f, 1 µm for (h), and 3 mm for i. 

 
 
 
 
Figure 3.  Late Mesoproterozoic and Neoproterozoic eukaryotic fossils: (a,b) “Tappania 

plana” from the Neoproterozoic Wynniatt Formation, arctic Canada, a complex form with 

septate, anastomosing processes, shown in detail in (b); (c) Bangiomorpha pubescens, from 

the late Mesoproterozoic Hunting Formation, arctic Canada, showing radial division of cells 

within a discrete zone of uniseriate filaments; (d) Konglingiphyton erecta, a macroscopic, 

dichotomously branched alga from the Ediacaran Doushantou Formation, China; (e) 

Eosaccharomyces ramosa from the late Mesoproterozoic Lakhanda succession, Siberia, 

showing net-like distribution on a bedding surface, with cells aligned along strands; (f) 

Segmentothallus asperus from the Lakhanda succession, a large uniseriate filament; (g) 

Appendisphaera grandis, a large acritarch with numerous, symmetrically arranged processes, 

from the Ediacaran Khamaka Formation, Siberia; (h) Kildinosphaera verrucata, an 

ornamented acritarch from the Neoproterozoic Miroyedikha Formation, Siberia; (i) Bonniea 

dacruchares, a vase-shaped protistan test from the Neoproterozoic Kwagunt Formation, Grand 

Canyon, U.S.A.; (j) preserved cast and mold of vase-shaped protist in silicified carbonates of 

the Neoproterozoic Ryssö Formation, Svalbard.  Scale bar = 100 µm in (a), 12 µm in (b), 40 

µm in (c) 4 mm in (d) 150 µm in (e), 500 µm in (f),  70 µm in (g),  25 µm in (h), 43 µm in (i), 

and 75 µm in (j). 
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Figure 4.  The composition and taxonomic richness of non-metazoan eukaryotes in Proterozoic 

to Early Cambrian fossil assemblages. (a) Total diversity of eukaryotic morphospecies for 

selected Proterozoic and Early Cambrian assemblages – in each column, a thin partition 

separates acritarchs from non-acritarchous protists; see legend in figure for compositions.  

Numbers refer to individual assemblages (principal references in parentheses; note that 

diversity estimates in the figure are the present authors’ and do not in every case coincide with 

estimates in the primary references): (1) Changcheng Gr. (Yan & Liu 1993), (2) Sarda Fm. 

(Prasad & Asher 2001), (3) Avadh Fm. (Prasad & Asher 2001), (4) Ruyang Gr. (Xiao et al. 

1997; Yin 1997), (5) Roper Gr. (Javaux et al. 2001, 2003, 2004), (6) Chamberlin Fm. 

(Horodyski 1982), (7) Hunting Fm. (Butterfield 2000, 2001) ; (8) Dundas Gr. (Samuelsson et 

al. 1999),  (9) Changlongshan Fm.(Du & Tian 1985) ; (10) Lakhanda Fm. (Jankauskas 1989; 

Herman 1990), (11) Miroyedikha Fm. (Jankauskas 1989; Herman 1990), (12) Lower Visingsö 

Gr. (Vidal 1976), (13) Båtsfjord Fm. (Vidal & Siedlecka 1983), (14) Upper Visingsö Gr. 

(Vidal 1976), (15) Wynniatt Fm. (Butterfield & Rainbird 1998; Butterfield 2005a,b); (16) 

Svanbergfjellet Fm. (Butterfield et al. 1994; Butterfield 2004); (17) Chuar Gr. (Vidal & Ford 

1985; Porter et al. 2003); (18) Ungoolya Gr. (Grey 2005); (19) Doushantuo Fm. (Yuan et al. 

2002); (20) Pertatataka Fm. (Zang & Walter 1992); (21) Yuryakh Fm. (Moczydlowska et al. 

1993); (22) Lantian Fm. (Yuan et al. 2002); (23) Redkino Gr. (Burzin et al. 1997); (24) Lower 

Nama Gr. (Germs et al. 1986); (25) Vergale Horizon, Baltic drillcore (Volkova et al. 1983); 

(26) Radzyń and Kaplonosy Fms., lower part (Moczydlowska 1991);  (27) Radzyń and 

Kaplonosy Fms., upper part (Moczydlowska 1991); (28) Baltic Depression drillcore, 

assemblage 1 (Hagenfelt 1989); (29) Baltic Depression drillcore, assemblage 2 (Hagenfelt 

1989); Læså Fm. (Moczydlowska & Vidal 1992); (30) Fucoid Beds (Downie 1982); 
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Tokammane Fm. (Knoll & Swett 1987). (b, c, and d) show the taxonomic richness of 

assemblages through time for acritarchs (b), macrofossil compressions (c), and (d) 

multicellular microfossils and vase-shaped protists; width of  rectangles indicates permissible 

age range for assemblages; C with arrow indicates position of Proterozoic-Cambrian 

boundary. 
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Appendix 

Table providing estimates of taxonomic richness used to construct Figure 4.  (Note that numbers 
provided here reflect the present authors’ diversity estimates, which do not necessarily coincide 
with those in original publications.) Age max and min = maximum and minimum age 
constraints on units (Ma); Acr U = unornamented spheroidal acritarchs; Acr O = ornamented 
spheroidal acritarchs; Acr AP = acritarchs with asymmetrically arranged processes; Acr SP = 
acritarchs with symmetrically arranged processes; VSMs = vase-shaped microfossils; MM = 
microscopic multicellular eukaryotes; Macro = macroscopic protists; Total = total protistan 
diversity within the stratigraphic unit. 
 

Stratigraphic Unit Location Age max Age min Acr U Acr O Acr AP Acr SP VSMs MM Macro Total Principal References
(# in Fig. 4a) (Ma) (Ma) U
1. Changcheng Gr China 1800 1600 2 1 1 0 0 0 0 4 Yan & Liu 1993
2. Sarda Fm India 1600 1000 3 0 1 0 0 0 0 4 Prasad & Asher 2001)
3. Avadh Fm India 1600 1000 3 1 1 0 0 0 0 5 Prasad & Asher 2001)
4. Ruyang Gr China 1600 1250 2 1 1 1 0 0 0 5 Xiao et al. 1997; Yin 1997
5. Roper Gr Australia 1500 1450 4 3 1 0 0 0 0 8 Javaux et al 2001, 2003, 2004
6. Chamberlain Fm USA 1470 1425 1 0 0 0 0 0 2 3 Horodyski 1982
7. Hunting Fm Canada 1300 1200 2 0 0 0 0 1 0 3 Butterfield 2000, 2001
8. Dundas Gr Greenland 1300 1200 2 7 0 1 0 0 0 10 Samuelsson et al. 1999
9. Changlongshan Form China 900 850 0 0 0 0 0 0 3 3 Du & Tian 1985
10. Lakhanda Gr Russia 1100 1005 3 2 3 0 0 5 0 13 Jankauskas 1989, German 1990
11. Miroyedikha Fm Russia 1000 800 4 3 1 0 0 2 0 10 Jankauskas 1989, German 1990
12. Visingö Gr (Lower, Mid) Sweden 900 840 4 3 0 0 0 0 0 7 Vidal 1976
13. Båtsfjord Fm Norway 900 800 2 5 0 1 0 0 0 8 Vidal & Siedlecka 1983
14. Visingö Gr (Upper) Sweden 840 800 4 6 0 1 1 0 0 12 Vidal 1976
15. Wynniatt Fm Canada 850 750 3 5 2 4 0 5 2 21 Butterfield & Rainbird 1994; Butterfield 2005a,b
16. Svanbergfjellet Fm Norway 800 735 6 5 3 4 0 5 2 25 Butterfield et al. 1994; Butterfield 2004
17. Chuar Gr USA 780 750 3 5 0 2 13 1 0 24 Vidal & Ford 1985; Porter et al. 2003
18. Ungoolya Gr Australia 632 560 3 4 3 23 0 0 4 37 Grey 2005
19. Doushantuo Fm China 632 551 2 5 0 24 0 11 20 62 Yuan et al. 2002
20. Pertatataka Fm Australia 632 550 3 3 0 19 0 0 25 Zang & Walter 1992
21. Yuryakh Fm Russia 632 550 2 0 0 9 0 0 0 11 Moczydlowska et al. 1993
22. Lantian Fm China 560 550 0 0 0 0 0 0 7 7 Yuan et al. 2002
23. Redkino Suite Russia 555 543 4 1 1 0 0 0 4 10 Burzin et al. 1997
24. Nama Gr Namibia 550 543 2 0 1 0 0 0 0 3 Germs et al. 1986
25. Vergale Horizon Estonia 525 510 3 20 1 18 0 0 0 42 Volkova et al. 1983
26. L. Radzyń/Kaplonosy Fms. Poland 525 510 1 16 0 11 0 0 0 28 Moczydlowska 1991
27. U. Radzyń/Kaplonosy Fms. Poland 525 510 1 13 1 18 0 0 0 33 Moczydlowska 1991
28. Baltic depression ass. 1 Sweden 525 510 3 20 0 14 0 0 0 37 Hagenfelt 1989
29. Baltic depression ass. 2 Sweden 525 510 5 24 0 16 0 0 0 45 Hagenfelt 1989
30. Laeså Fm. Denmark 525 510 1 17 0 12 0 0 0 30 Moczydlowska & Vidal 1992
31. Fucoid Beds Scotland 525 510 2 18 1 14 0 0 0 35 Downie 1982
32. Tokammane Fm. Norway 525 510 2 15 0 15 0 0 0 32 Knoll & Swett 1987
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