228 research outputs found
Confirmation of SBS 1150+599A As An Extremely Metal-Poor Planetary Nebula
SBS 1150+599A is a blue stellar object at high galactic latitude discovered
in the Second Byurakan Survey. New high-resolution images of SBS 1150+599A are
presented, demonstrating that it is very likely to be an old planetary nebula
in the galactic halo, as suggested by Tovmassian et al (2001). An H-alpha image
taken with the WIYN 3.5-m telescope and its "tip/tilt" module reveals the
diameter of the nebula to be 9.2", comparable to that estimated from spectra by
Tovmassian et al. Lower limits to the central star temperature were derived
using the Zanstra hydrogen and helium methods to determine that the star's
effective temperature must be > 68,000K and that the nebula is optically thin.
New spectra from the MMT and FLWO telescopes are presented, revealing the
presence of strong [Ne V] lambda 3425, indicating that the central star
temperature must be > 100,000K. With the revised diameter, new central star
temperature, and an improved central star luminosity, we can constrain
photoionization models for the nebula significantly better than before. Because
the emission-line data set is sparse, the models are still not conclusive.
Nevertheless, we confirm that this nebula is an extremely metal-poor planetary
nebula, having a value for O/H that is less than 1/100 solar, and possibly as
low as 1/500 solar.Comment: 19 pages, 6 figures. Accepted for publication in the Astronomical
Journa
Pendekatan Qspm Sebagai Dasar Perumusan Strategi Peningkatan Pendapatan Asli Daerah Kabupaten Batang, Jawa Tengah
The aim of this research is to analyse of increasing Local Original Income (LOI) strategy and his influence to increasing the regional income. The research was done at Local Government Income of Batang regency. This research also want to know that the LOI strategy was based on the potencies and opportunities. The analyzing use the IFE, EFE, SWOT, and then QSPM to choose strategic formulation; and proportion models. The result of Internal – External analysis show that increasing strategy of LOI have not based on the potencies and opportunities that they have yet. The Local Government Income of Batang Regency needs the intensification strategy for increasing the LOI. By the QSPM analysis, the Local Government Income of Batang Regency needs extensification strategy for LOI acceptance
Phylogeny and Classification of the Trapdoor Spider Genus Myrmekiaphila: An Integrative Approach to Evaluating Taxonomic Hypotheses
Background: Revised by Bond and Platnick in 2007, the trapdoor spider genus Myrmekiaphila comprises 11 species. Species delimitation and placement within one of three species groups was based on modifications of the male copulatory device. Because a phylogeny of the group was not available these species groups might not represent monophyletic lineages; species definitions likewise were untested hypotheses. The purpose of this study is to reconstruct the phylogeny of Myrmekiaphila species using molecular data to formally test the delimitation of species and species-groups. We seek to refine a set of established systematic hypotheses by integrating across molecular and morphological data sets. Methods and Findings: Phylogenetic analyses comprising Bayesian searches were conducted for a mtDNA matrix composed of contiguous 12S rRNA, tRNA-val, and 16S rRNA genes and a nuclear DNA matrix comprising the glutamyl and prolyl tRNA synthetase gene each consisting of 1348 and 481 bp, respectively. Separate analyses of the mitochondrial and nuclear genome data and a concatenated data set yield M. torreya and M. millerae paraphyletic with respect to M. coreyi and M. howelli and polyphyletic fluviatilis and foliata species groups. Conclusions: Despite the perception that molecular data present a solution to a crisis in taxonomy, studies like this demonstrate the efficacy of an approach that considers data from multiple sources. A DNA barcoding approach during the species discovery process would fail to recognize at least two species (M. coreyi and M. howelli) whereas a combine
Millipede taxonomy after 250 years: classification and taxonomic practices in a mega-diverse yet understudied arthropod group.
BACKGROUND: The arthropod class Diplopoda is a mega-diverse group comprising >12,000 described millipede species. The history of taxonomic research within the group is tumultuous and, consequently, has yielded a questionable higher-level classification. Few higher-taxa are defined using synapomorphies, and the practice of single taxon descriptions lacking a revisionary framework has produced many monotypic taxa. Additionally, taxonomic and geographic biases render global species diversity estimations unreliable. We test whether the ordinal taxa of the Diplopoda are consistent with regards to underlying taxonomic diversity, attempt to provide estimates for global species diversity, and examine millipede taxonomic effort at a global geographic scale. METHODOLOGY/PRINCIPAL FINDINGS: A taxonomic distinctness metric was employed to assess uniformity of millipede ordinal taxa. We found that ordinal-level taxa are not uniform and are likely overinflated with higher-taxa when compared to related groups. Several methods of estimating global species richness were employed (Bayesian, variation in taxonomic productivity, extrapolation from nearly fully described taxa). Two of the three methods provided estimates ranging from 13,413-16,760 species. Variations in geographic diversity show biases to North America and Europe and a paucity of works on tropical taxa. CONCLUSIONS/SIGNIFICANCE: Before taxa can be used in an extensible way, they must be definable with respect to the diversity they contain and the diagnostic characters used to delineate them. The higher classification for millipedes is shown to be problematic from a number of perspectives. Namely, the ordinal taxa are not uniform in their underlying diversity, and millipedes appear to have a disproportionate number of higher-taxa. Species diversity estimates are unreliable due to inconsistent taxonomic effort at temporal, geographic, and phylogenetic scales. Lack of knowledge concerning many millipede groups compounds these issues. Diplopods are likely not unique in this regard as these issues may persist in many other diverse yet poorly studied groups
Ecology and diversity of culturable fungal species associated with soybean seedling diseases in the Midwestern United States
Aims: To isolate and characterize fungi associated with diseased soybean seedlings in Midwestern soybean production fields and to determine the influence of environmental and edaphic factors on their incidence.
Methods and Results: Seedlings were collected from fields with seedling disease history in 2012 and 2013 for fungal isolation. Environmental and edaphic data associated with each field was collected. 3036 fungal isolates were obtained and assigned to 76 species. The most abundant genera recovered were Fusarium (73%) and Trichoderma (11.2%). Other genera included Mortierella, Clonostachys, Rhizoctonia, Alternaria, Mucor, Phoma, Macrophomina and Phomopsis. Most recovered species are known soybean pathogens. However, non-pathogenic organisms were also isolated. Crop history, soil density, water source, precipitation and temperature were the main factors influencing the abundance of fungal species.
Conclusion: Key fungal species associated with soybean seedling diseases occurring in several US production regions were characterized. This work also identified major environment and edaphic factors affecting the abundance and occurrence of these species.
Significance and Impact of the Study: The identification and characterization of the main pathogens associated with seedling diseases across major soybean-producing areas could help manage those pathogens, and devise more effective and sustainable practices to reduce the damage they cause
Design of 280 GHz feedhorn-coupled TES arrays for the balloon-borne polarimeter SPIDER
We describe 280 GHz bolometric detector arrays that instrument the
balloon-borne polarimeter SPIDER. A primary science goal of SPIDER is to
measure the large-scale B-mode polarization of the cosmic microwave background
in search of the cosmic-inflation, gravitational-wave signature. 280 GHz
channels aid this science goal by constraining the level of B-mode
contamination from galactic dust emission. We present the focal plane unit
design, which consists of a 1616 array of conical, corrugated feedhorns
coupled to a monolithic detector array fabricated on a 150 mm diameter silicon
wafer. Detector arrays are capable of polarimetric sensing via waveguide
probe-coupling to a multiplexed array of transition-edge-sensor (TES)
bolometers. The SPIDER receiver has three focal plane units at 280 GHz, which
in total contains 765 spatial pixels and 1,530 polarization sensitive
bolometers. By fabrication and measurement of single feedhorns, we demonstrate
14.7 FHWM Gaussian-shaped beams with 1% ellipticity in a 30%
fractional bandwidth centered at 280 GHz. We present electromagnetic
simulations of the detection circuit, which show 94% band-averaged,
single-polarization coupling efficiency, 3% reflection and 3% radiative loss.
Lastly, we demonstrate a low thermal conductance bolometer, which is
well-described by a simple TES model and exhibits an electrical noise
equivalent power (NEP) = 2.6 10 W/,
consistent with the phonon noise prediction.Comment: Proceedings of SPIE Astronomical Telescopes + Instrumentation 201
Using Land-Based Surveys to Assess Sea Duck Abundance and Behavior in Nearshore Waters of Southern New England, USA
Nearshore waters provide very important habitat for sea ducks (Tribe Mergini) during migration and winter, but gathering information on sea duck use of shallow nearshore waters is challenging because traditional aerial and boat-based surveys are expensive, are usually conducted infrequently, and are often not feasible near the coast. The objective of this study was to use land-based surveys to characterize spatiotemporal variation in the abundance and behavior (e.g., foraging, flying) of Common Eider (Somateria mollissima) and scoters (Melanitta spp.) in nearshore waters of southern New England. Surveys (60–120 min per survey, n = 1,044 surveys) were conducted throughout the day from February 2009 to July 2010 to assess diurnal and seasonal variation in sea duck behavior and spatial distribution at nine sites in southern Rhode Island. The density of sea ducks resting or foraging on the water exhibited little diurnal variation, whereas flight activity dramatically increased nearer to sunrise. Sea duck densities and passage rates (individuals/km2/hr) peaked during migration periods from October through November and February through April, although there were important seasonal differences between sites. For example, the highest densities of Common Eider during fall were in a protected estuary, whereas abundance of scoters during fall was greater at a coastal headland. The relative activity of Common Eider on the water and in flight was similar among sites, whereas scoters exhibited highly variable activity among sites, particularly during winter and spring. The spatiotemporal patterns in abundance and behavior of sea ducks in nearshore waters that we detected using land-based surveys provides essential, complementary information to that available from other types of waterfowl and seabird surveys in southern New England
Arthropod Phylogenetics in Light of Three Novel Millipede (Myriapoda: Diplopoda) Mitochondrial Genomes with Comments on the Appropriateness of Mitochondrial Genome Sequence Data for Inferring Deep Level Relationships
Background
Arthropods are the most diverse group of eukaryotic organisms, but their phylogenetic relationships are poorly understood. Herein, we describe three mitochondrial genomes representing orders of millipedes for which complete genomes had not been characterized. Newly sequenced genomes are combined with existing data to characterize the protein coding regions of myriapods and to attempt to reconstruct the evolutionary relationships within the Myriapoda and Arthropoda.
Results
The newly sequenced genomes are similar to previously characterized millipede sequences in terms of synteny and length. Unique translocations occurred within the newly sequenced taxa, including one half of the Appalachioria falcifera genome, which is inverted with respect to other millipede genomes. Across myriapods, amino acid conservation levels are highly dependent on the gene region. Additionally, individual loci varied in the level of amino acid conservation. Overall, most gene regions showed low levels of conservation at many sites. Attempts to reconstruct the evolutionary relationships suffered from questionable relationships and low support values. Analyses of phylogenetic informativeness show the lack of signal deep in the trees (i.e., genes evolve too quickly). As a result, the myriapod tree resembles previously published results but lacks convincing support, and, within the arthropod tree, well established groups were recovered as polyphyletic.
Conclusions
The novel genome sequences described herein provide useful genomic information concerning millipede groups that had not been investigated. Taken together with existing sequences, the variety of compositions and evolution of myriapod mitochondrial genomes are shown to be more complex than previously thought. Unfortunately, the use of mitochondrial protein-coding regions in deep arthropod phylogenetics appears problematic, a result consistent with previously published studies. Lack of phylogenetic signal renders the resulting tree topologies as suspect. As such, these data are likely inappropriate for investigating such ancient relationships
- …