443 research outputs found

    Enhanced emotion regulation capacity and its neural substrates in those exposed to moderate childhood adversity.

    Get PDF
    Individuals exposed to childhood adversities (CA) present with emotion regulation (ER) difficulties in later life, which have been identified as risk and maintenance factors for psychopathologies. However, it is unclear if CA negatively impacts on ER capacity per se or whether observed regulation difficulties are a function of the challenging circumstances in which ER is being deployed. In this longitudinal study, we aimed to clarify this association by investigating the behavioral and neural effects of exposure to common moderate CA (mCA) on a laboratory measure of ER capacity in late adolescence/young adulthood. Our population-derived samples of adolescents/young adults (N = 53) were administered a film-based ER-task during functional magnetic resonance imaging that allowed evaluation of ER across mCA-exposure. mCA-exposure was associated with enhanced ER capacity over both positive and negative affect. At the neural level, the better ER of negative material in those exposed to mCA was associated with reduced recruitment of ER-related brain regions, including the prefrontal cortex and temporal gyrus. In addition mCA-exposure was associated with a greater down-regulation of the amygdala during ER of negative material. The implications of these findings for our understanding of the effects of mCA on the emergence of resilience in adolescence are discussed

    The Infrared Imaging Spectrograph (IRIS) for TMT: Data Reduction System

    Get PDF
    IRIS (InfraRed Imaging Spectrograph) is the diffraction-limited first light instrument for the Thirty Meter Telescope (TMT) that consists of a near-infrared (0.84 to 2.4 ÎŒ\mum) imager and integral field spectrograph (IFS). The IFS makes use of a lenslet array and slicer for spatial sampling, which will be able to operate in 100's of different modes, including a combination of four plate scales from 4 milliarcseconds (mas) to 50 mas with a large range of filters and gratings. The imager will have a field of view of 34×\times34 arcsec2^{2} with a plate scale of 4 mas with many selectable filters. We present the preliminary design of the data reduction system (DRS) for IRIS that need to address all of these observing modes. Reduction of IRIS data will have unique challenges since it will provide real-time reduction and analysis of the imaging and spectroscopic data during observational sequences, as well as advanced post-processing algorithms. The DRS will support three basic modes of operation of IRIS; reducing data from the imager, the lenslet IFS, and slicer IFS. The DRS will be written in Python, making use of open-source astronomical packages available. In addition to real-time data reduction, the DRS will utilize real-time visualization tools, providing astronomers with up-to-date evaluation of the target acquisition and data quality. The quicklook suite will include visualization tools for 1D, 2D, and 3D raw and reduced images. We discuss the overall requirements of the DRS and visualization tools, as well as necessary calibration data to achieve optimal data quality in order to exploit science cases across all cosmic distance scales.Comment: 13 pages, 2 figures, 6 tables, Proceeding 9913-165 of the SPIE Astronomical Telescopes + Instrumentation 201

    FY17 Report Summaries of Five Completed Center Innovation Fund (CIF) Projects for the Highlights/Abstract Section of the FY 2018 CIF Annual Report

    Get PDF
    The Center Innovation Fund Annual Report for FY18 is an annual report for Space Technology Mission Directorate (STMD) Leadership, STMD Principle Technologists, and Center Innovation Fund Management. Attached is the Highlights/Abstract section of this annual report, which is the only section to be shared outside of NASA. Contributors were asked not to include any SBU information for these report summaries

    The Infrared Imaging Spectrograph (IRIS) for TMT: Instrument Overview

    Full text link
    We present an overview of the design of IRIS, an infrared (0.84 - 2.4 micron) integral field spectrograph and imaging camera for the Thirty Meter Telescope (TMT). With extremely low wavefront error (<30 nm) and on-board wavefront sensors, IRIS will take advantage of the high angular resolution of the narrow field infrared adaptive optics system (NFIRAOS) to dissect the sky at the diffraction limit of the 30-meter aperture. With a primary spectral resolution of 4000 and spatial sampling starting at 4 milliarcseconds, the instrument will create an unparalleled ability to explore high redshift galaxies, the Galactic center, star forming regions and virtually any astrophysical object. This paper summarizes the entire design and basic capabilities. Among the design innovations is the combination of lenslet and slicer integral field units, new 4Kx4k detectors, extremely precise atmospheric dispersion correction, infrared wavefront sensors, and a very large vacuum cryogenic system.Comment: Proceedings of the SPIE, 9147-76 (2014

    The InfraRed Imaging Spectrograph (IRIS) for TMT: latest science cases and simulations

    Full text link
    The Thirty Meter Telescope (TMT) first light instrument IRIS (Infrared Imaging Spectrograph) will complete its preliminary design phase in 2016. The IRIS instrument design includes a near-infrared (0.85 - 2.4 micron) integral field spectrograph (IFS) and imager that are able to conduct simultaneous diffraction-limited observations behind the advanced adaptive optics system NFIRAOS. The IRIS science cases have continued to be developed and new science studies have been investigated to aid in technical performance and design requirements. In this development phase, the IRIS science team has paid particular attention to the selection of filters, gratings, sensitivities of the entire system, and science cases that will benefit from the parallel mode of the IFS and imaging camera. We present new science cases for IRIS using the latest end-to-end data simulator on the following topics: Solar System bodies, the Galactic center, active galactic nuclei (AGN), and distant gravitationally-lensed galaxies. We then briefly discuss the necessity of an advanced data management system and data reduction pipeline.Comment: 15 pages, 7 figures, SPIE (2016) 9909-0

    The Infrared Imaging Spectrograph (IRIS) for TMT: instrument overview

    Get PDF
    IRIS is a near-infrared (0.84 to 2.4 micron) integral field spectrograph and wide-field imager being developed for first light with the Thirty Meter Telescope (TMT). It mounts to the advanced adaptive optics (AO) system NFIRAOS and has integrated on-instrument wavefront sensors (OIWFS) to achieve diffraction-limited spatial resolution at wavelengths longer than 1 ÎŒm. With moderate spectral resolution (R ~ 4000 – 8,000) and large bandpass over a continuous field of view, IRIS will open new opportunities in virtually every area of astrophysical science. It will be able to resolve surface features tens of kilometers across Titan, while also mapping the most distant galaxies at the scale of an individual star forming region. This paper summarizes the entire design and capabilities, and includes the results from the nearly completed preliminary design phase

    Modulation of SOCS protein expression influences the interferon responsiveness of human melanoma cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Endogenously produced interferons can regulate the growth of melanoma cells and are administered exogenously as therapeutic agents to patients with advanced cancer. We investigated the role of negative regulators of interferon signaling known as suppressors of cytokine signaling (SOCS) in mediating interferon-resistance in human melanoma cells.</p> <p>Methods</p> <p>Basal and interferon-alpha (IFN-α) or interferon-gamma (IFN-γ)-induced expression of SOCS1 and SOCS3 proteins was evaluated by immunoblot analysis in a panel of n = 10 metastatic human melanoma cell lines, in human embryonic melanocytes (HEM), and radial or vertical growth phase melanoma cells. Over-expression of SOCS1 and SOCS3 proteins in melanoma cells was achieved using the PINCO retroviral vector, while siRNA were used to inhibit SOCS1 and SOCS3 expression. Tyr<sup>701</sup>-phosphorylated STAT1 (P-STAT1) was measured by intracellular flow cytometry and IFN-stimulated gene expression was measured by Real Time PCR.</p> <p>Results</p> <p>SOCS1 and SOCS3 proteins were expressed at basal levels in melanocytes and in all melanoma cell lines examined. Expression of the SOCS1 and SOCS3 proteins was also enhanced following stimulation of a subset of cell lines with IFN-α or IFN-γ. Over-expression of SOCS proteins in melanoma cell lines led to significant inhibition of Tyr<sup>701</sup>-phosphorylated STAT1 (P-STAT1) and gene expression following stimulation with IFN-α (IFIT2, OAS-1, ISG-15) or IFN-γ (IRF1). Conversely, siRNA inhibition of SOCS1 and SOCS3 expression in melanoma cells enhanced their responsiveness to interferon stimulation.</p> <p>Conclusions</p> <p>These data demonstrate that SOCS proteins are expressed in human melanoma cell lines and their modulation can influence the responsiveness of melanoma cells to IFN-α and IFN-γ.</p
    • 

    corecore