81 research outputs found

    Audio-Based Wildfire Detection on Embedded Systems

    Get PDF
    The occurrence of wildfires often results in significant fatalities. As wildfires are notorious for their high speed of spread, the ability to identify wildfire at its early stage is essential in quickly obtaining control of the fire and in reducing property loss and preventing loss of life. This work presents a machine learning wildfire detecting data pipeline that can be deployed on embedded systems in remote locations. The proposed data pipeline consists of three main steps: audio preprocessing, feature engineering, and classification. Experiments show that the proposed data pipeline is capable of detecting wildfire effectively with high precision and is capable of detecting wildfire sound over the forest’s background soundscape. When being deployed on a Raspberry Pi 4, the proposed data pipeline takes 66 milliseconds to process a 1 s sound clip. To the knowledge of the author, this is the first edge-computing implementation of an audio-based wildfire detection syste

    Audio-Based Wildfire Detection on Embedded Systems

    Get PDF
    The occurrence of wildfires often results in significant fatalities. As wildfires are notorious for their high speed of spread, the ability to identify wildfire at its early stage is essential in quickly obtaining control of the fire and in reducing property loss and preventing loss of life. This work presents a machine learning wildfire detecting data pipeline that can be deployed on embedded systems in remote locations. The proposed data pipeline consists of three main steps: audio preprocessing, feature engineering, and classification. Experiments show that the proposed data pipeline is capable of detecting wildfire effectively with high precision and is capable of detecting wildfire sound over the forest’s background soundscape. When being deployed on a Raspberry Pi 4, the proposed data pipeline takes 66 milliseconds to process a 1 s sound clip. To the knowledge of the author, this is the first edge-computing implementation of an audio-based wildfire detection system

    Kin-Aggregations Explain Chaotic Genetic Patchiness, a Commonly Observed Genetic Pattern, in a Marine Fish

    Get PDF
    The phenomenon of chaotic genetic patchiness is a pattern commonly seen in marine organisms, particularly those with demersal adults and pelagic larvae. This pattern is usually associated with sweepstakes recruitment and variable reproductive success. Here we investigate the biological underpinnings of this pattern in a species of marine goby Coryphopterus personatus. We find that populations of this species show tell-tale signs of chaotic genetic patchiness including: small, but significant, differences in genetic structure over short distances; a non-equilibrium or “chaotic” pattern of differentiation among locations in space; and within locus, within population deviations from the expectations of Hardy-Weinberg equilibrium (HWE). We show that despite having a pelagic larval stage, and a wide distribution across Caribbean coral reefs, this species forms groups of highly related individuals at small spatial scales (metres). These spatially clustered family groups cause the observed deviations from HWE and local population differentiation, a finding that is rarely demonstrated, but could be more common than previously thought

    Accelerating LSTM-based High-Rate Dynamic System Models

    Full text link
    In this paper, we evaluate the use of a trained Long Short-Term Memory (LSTM) network as a surrogate for a Euler-Bernoulli beam model, and then we describe and characterize an FPGA-based deployment of the model for use in real-time structural health monitoring applications. The focus of our efforts is the DROPBEAR (Dynamic Reproduction of Projectiles in Ballistic Environments for Advanced Research) dataset, which was generated as a benchmark for the study of real-time structural modeling applications. The purpose of DROPBEAR is to evaluate models that take vibration data as input and give the initial conditions of the cantilever beam on which the measurements were taken as output. DROPBEAR is meant to serve an exemplar for emerging high-rate "active structures" that can be actively controlled with feedback latencies of less than one microsecond. Although the Euler-Bernoulli beam model is a well-known solution to this modeling problem, its computational cost is prohibitive for the time scales of interest. It has been previously shown that a properly structured LSTM network can achieve comparable accuracy with less workload, but achieving sub-microsecond model latency remains a challenge. Our approach is to deploy the LSTM optimized specifically for latency on FPGA. We designed the model using both high-level synthesis (HLS) and hardware description language (HDL). The lowest latency of 1.42 μ\muS and the highest throughput of 7.87 Gops/s were achieved on Alveo U55C platform for HDL design.Comment: Accepted at 33rd International Conference on Field-Programmable Logic and Applications (FPL

    Pain and temperature processing in dementia: a clinical and neuroanatomical analysis

    Get PDF
    Symptoms suggesting altered processing of pain and temperature have been described in dementia diseases and may contribute importantly to clinical phenotypes, particularly in the frontotemporal lobar degeneration spectrum, but the basis for these symptoms has not been characterized in detail. Here we analysed pain and temperature symptoms using a semi-structured caregiver questionnaire recording altered behavioural responsiveness to pain or temperature for a cohort of patients with frontotemporal lobar degeneration (n = 58, 25 female, aged 52–84 years, representing the major clinical syndromes and representative pathogenic mutations in the C9orf72 and MAPT genes) and a comparison cohort of patients with amnestic Alzheimer’s disease (n = 20, eight female, aged 53–74 years). Neuroanatomical associations were assessed using blinded visual rating and voxel-based morphometry of patients’ brain magnetic resonance images. Certain syndromic signatures were identified: pain and temperature symptoms were particularly prevalent in behavioural variant frontotemporal dementia (71% of cases) and semantic dementia (65% of cases) and in association with C9orf72 mutations (6/6 cases), but also developed in Alzheimer’s disease (45% of cases) and progressive non-fluent aphasia (25% of cases). While altered temperature responsiveness was more common than altered pain responsiveness across syndromes, blunted responsiveness to pain and temperature was particularly associated with behavioural variant frontotemporal dementia (40% of symptomatic cases) and heightened responsiveness with semantic dementia (73% of symptomatic cases) and Alzheimer’s disease (78% of symptomatic cases). In the voxel-based morphometry analysis of the frontotemporal lobar degeneration cohort, pain and temperature symptoms were associated with grey matter loss in a right-lateralized network including insula (P < 0.05 corrected for multiple voxel-wise comparisons within the prespecified anatomical region of interest) and anterior temporal cortex (P < 0.001 uncorrected over whole brain) previously implicated in processing homeostatic signals. Pain and temperature symptoms accompanying C9orf72 mutations were specifically associated with posterior thalamic atrophy (P < 0.05 corrected for multiple voxel-wise comparisons within the prespecified anatomical region of interest). Together the findings suggest candidate cognitive and neuroanatomical bases for these salient but under-appreciated phenotypic features of the dementias, with wider implications for the homeostatic pathophysiology and clinical management of neurodegenerative diseases

    Processing of Self versus Non-Self in Alzheimer’s Disease

    Get PDF
    Despite considerable evidence for abnormalities of self-awareness in Alzheimer’s disease (AD), the cognitive mechanisms of altered self-processing in AD have not been fully defined. Here we addressed this issue in a detailed analysis of self/non-self-processing in three patients with AD. We designed a novel neuropsychological battery comprising tests of tactile body schema coding, attribution of tactile events to self versus external agents, and memory for self- versus non-self-generated vocal information, administered in conjunction with a daily life measure of self/non-self-processing (the Interpersonal Reactivity Index). Three male AD patients (aged 54–68 years; one with a pathogenic mutation in the Presenilin 1 gene, one with a pathogenic mutation in the Amyloid Precursor Protein gene, and one with a CSF protein profile supporting underlying AD pathology) were studied in relation to a group of eight healthy older male individuals (aged 58–74 years). Compared to healthy controls, all patients had relatively intact tactile body schema processing. In contrast, all patients showed impaired memory for words previously presented using the patient’s own voice whereas memory for words presented in other voices was less consistently affected. Two patients showed increased levels of emotional contagion and reduced perspective taking on the Interpersonal Reactivity Index. Our findings suggest that AD may be associated with deficient self/non-self differentiation over time despite a relatively intact body image: this profile of altered self-processing contrasts with the deficit of tactile body schema previously described in frontotemporal dementia associated with C9orf72 mutations. We present these findings as a preliminary rationale to direct future systematic study in larger patient cohorts

    Signatures of arithmetic simplicity in metabolic network architecture

    Get PDF
    Metabolic networks perform some of the most fundamental functions in living cells, including energy transduction and building block biosynthesis. While these are the best characterized networks in living systems, understanding their evolutionary history and complex wiring constitutes one of the most fascinating open questions in biology, intimately related to the enigma of life's origin itself. Is the evolution of metabolism subject to general principles, beyond the unpredictable accumulation of multiple historical accidents? Here we search for such principles by applying to an artificial chemical universe some of the methodologies developed for the study of genome scale models of cellular metabolism. In particular, we use metabolic flux constraint-based models to exhaustively search for artificial chemistry pathways that can optimally perform an array of elementary metabolic functions. Despite the simplicity of the model employed, we find that the ensuing pathways display a surprisingly rich set of properties, including the existence of autocatalytic cycles and hierarchical modules, the appearance of universally preferable metabolites and reactions, and a logarithmic trend of pathway length as a function of input/output molecule size. Some of these properties can be derived analytically, borrowing methods previously used in cryptography. In addition, by mapping biochemical networks onto a simplified carbon atom reaction backbone, we find that several of the properties predicted by the artificial chemistry model hold for real metabolic networks. These findings suggest that optimality principles and arithmetic simplicity might lie beneath some aspects of biochemical complexity

    Parents' Experiences Discussing Pediatric Vaccination with Healthcare Providers: A Survey of Canadian Naturopathic Patients

    Get PDF
    Parents who choose to selectively vaccinate or avoid vaccination for their children may do so at risk of compromising relations with their family physician or pediatrician. Groups that are associated with reduced rates of pedicatic vaccination, such as parents who access naturopathic care, may be particularly vulnerable to this issue.In March through September 2010, we administered a 26-item cross-sectional survey to 129 adult patients, all of whom were parents with children ≤ 16 years of age, presenting for naturopathic care in Ontario, Canada. Ninety-five parents completed the survey (response rate 74%), and only 50.5% (48 of 95) reported that their children had received all recommended vaccines. Most parents (50.5%; 48 of 95) reported feeling pressure to vaccinate from their allopathic physician and, of those who discussed vaccination with their physician, 25.9% (21 of 81) were less comfortable continuing care as a result. Five percent (4 of 81) of respondents were advised by their physician that their children would be refused care if they decided against vaccination. In our adjusted generalized linear model, feeling pressure to vaccinate (odds ratio [OR] = 3.07; 95% confidence interval [CI] = 1.14 to 8.26) or endorsing a naturopathic physician as their most trusted source of information regarding vaccination (OR = 3.57; 95% CI = 1.22 to 10.44) were associated with greater odds of having a partially vaccinated or unvaccinated child. The majority (69.6%; 32 of 46) of parent's with partially vaccinated or unvaccinated children reported a willingness to re-consider this decision.Use of naturopathic care should be explored among parents in order to identify this high-risk group and engage them in discussion regarding pediatric vaccination to encourage evidence-based, shared decision making. Physicians should ensure that discussions regarding vaccination are respectful, even if parents are determined not to vaccinate their children

    Dementias show differential physiological responses to salient sounds.

    Get PDF
    Abnormal responsiveness to salient sensory signals is often a prominent feature of dementia diseases, particularly the frontotemporal lobar degenerations, but has been little studied. Here we assessed processing of one important class of salient signals, looming sounds, in canonical dementia syndromes. We manipulated tones using intensity cues to create percepts of salient approaching ("looming") or less salient withdrawing sounds. Pupil dilatation responses and behavioral rating responses to these stimuli were compared in patients fulfilling consensus criteria for dementia syndromes (semantic dementia, n = 10; behavioral variant frontotemporal dementia, n = 16, progressive nonfluent aphasia, n = 12; amnestic Alzheimer's disease, n = 10) and a cohort of 26 healthy age-matched individuals. Approaching sounds were rated as more salient than withdrawing sounds by healthy older individuals but this behavioral response to salience did not differentiate healthy individuals from patients with dementia syndromes. Pupil responses to approaching sounds were greater than responses to withdrawing sounds in healthy older individuals and in patients with semantic dementia: this differential pupil response was reduced in patients with progressive nonfluent aphasia and Alzheimer's disease relative both to the healthy control and semantic dementia groups, and did not correlate with nonverbal auditory semantic function. Autonomic responses to auditory salience are differentially affected by dementias and may constitute a novel biomarker of these diseases
    corecore