23 research outputs found

    Self Supervised Clustering of Traffic Scenes using Graph Representations

    Full text link
    Examining graphs for similarity is a well-known challenge, but one that is mandatory for grouping graphs together. We present a data-driven method to cluster traffic scenes that is self-supervised, i.e. without manual labelling. We leverage the semantic scene graph model to create a generic graph embedding of the traffic scene, which is then mapped to a low-dimensional embedding space using a Siamese network, in which clustering is performed. In the training process of our novel approach, we augment existing traffic scenes in the Cartesian space to generate positive similarity samples. This allows us to overcome the challenge of reconstructing a graph and at the same time obtain a representation to describe the similarity of traffic scenes. We could show, that the resulting clusters possess common semantic characteristics. The approach was evaluated on the INTERACTION dataset

    RNA interference in honeybees : off-target effects caused by dsRNA

    Get PDF
    RNA interference involves the targeted knockdown of mRNA triggered by complementary dsRNA molecules applied to an experimental organism. Although this technique has been successfully used in honeybees (Apis mellifera), it remains unclear whether the application of dsRNA leads to unintended expression knockdown in unspecific, non-targeted genes. Therefore, we studied the gene expression of four non-target genes coding for proteins that are involved in different physiological processes after treatment with three dsRNAs in two abdominal tissues. We found unspecific gene downregulation depending on both the dsRNA used and the different tissues. Hence, RNAi experiments in the honeybee require rigid controls and carefully selected dsRNA sequences to avoid misinterpretation of RNAi-derived phenotypes.This study was financially supported by the DFG (RFAM).http://link.springer.com/journal/13592hb2016Zoology and Entomolog

    Deformed wing virus and drone mating flights in the honey bee ( Apis mellifera ): implications for sexual transmission of a major honey bee virus

    Get PDF
    Deformed wing virus (DWV) represents an ideal model to study the interaction between mode of transmission and virulence in honey bees since it exhibits both horizontal and vertical transmissions. However, it is not yet clear if venereal-vertical transmission represents a regular mode of transmission for this virus in natural honey bee populations. Here, we provide clear evidence for the occurrence of high DWV titres in the endophallus of sexually mature drones collected from drone congregation areas (DCAs). Furthermore, the endophallus DWV titres of drones collected at their maternal hives were no different from drones collected at nearby DCAs, suggesting that high-titre DWV infection of the endophallus does not hinder the ability of drones to reach the mating area. The results are discussed within the context of the dispersal of DWV between colonies and the definition of DWV virulence with respect to the transmission route and the types of tissues infecte

    Standard methods for molecular research in Apis mellifera

    Get PDF
    From studies of behaviour, chemical communication, genomics and developmental biology, among many others, honey bees have long been a key organism for fundamental breakthroughs in biology. With a genome sequence in hand, and much improved genetic tools, honey bees are now an even more appealing target for answering the major questions of evolutionary biology, population structure, and social organization. At the same time, agricultural incentives to understand how honey bees fall prey to disease, or evade and survive their many pests and pathogens, have pushed for a genetic understanding of individual and social immunity in this species. Below we describe and reference tools for using modern molecular-biology techniques to understand bee behaviour, health, and other aspects of their biology. We focus on DNA and RNA techniques, largely because techniques for assessing bee proteins are covered in detail in Hartfelder et al. (2013). We cover practical needs for bee sampling, transport, and storage, and then discuss a range of current techniques for genetic analysis. We then provide a roadmap for genomic resources and methods for studying bees, followed by specific statistical protocols for population genetics, quantitative genetics, and phylogenetics. Finally, we end with three important tools for predicting gene regulation and function in honey bees: Fluorescence in situ hybridization (FISH), RNA interference (RNAi), and the estimation of chromosomal methylation and its role in epigenetic gene regulation.Fundação para a Ciência e Tecnologi

    Control of mandibular gland pheromone synthesis by alternative splicing of the CP-2 transcription factor gemini in honeybees (Apis mellifera carnica)

    No full text
    The honeybee queen’s mandibular gland pheromones (QMP) are essential for the suppression of worker reproduction. Worker ovary activation is regulated by alternative splicing of a CP2-transcription factor named gemini. Since workers with activated ovaries also produce QMP in their mandibular glands, we tested whether alternative splicing of gemini also controls mandibular gland pheromone biosynthesis in workers using RNA interference. Altering the splice pattern of gemini resulted in enhanced levels of the queen-specific components of the mandibular gland pheromone in queenless honeybee workers, suggesting that gemini functions as a pleiotropic regulatory switch influencing both ovary activation and resulting in QMP synthesis in workers. Because the QMP produced by these workers suppresses ovary activation in other workers, gemini seems to be a key regulatory gene affecting reproductive hierarchies among workers in queenless colonies.The Deutsche Forschungsgemeinschaft (RFAM; MO 373/30-1), the South African National Research Foundation’s (NRF) incentive funding to CWWP, RMC, and Research Career Advancement (RCA) fellowship to AAY (Grant no. 91419).http://link.springer.com/journal/135922019-08-01hj2019Zoology and Entomolog

    Alternative splicing of a single transcription factor drives selfish reproductive behavior in honeybee workers (Apis mellifera)

    No full text
    In eusocial insects the production of daughters is generally restricted to mated queens, and unmated workers are functionally sterile. The evolution of this worker sterility has been plausibly explained by kin selection theory [Hamilton W (1964) J Theor Biol 7:1–52], and many traits have evolved to prevent conflict over reproduction among the females in an insect colony. In honeybees (Apis mellifera), worker reproduction is regulated by the queen, brood pheromones, and worker policing. However, workers of the Cape honeybee, Apis mellifera capensis, can evade this control and establish themselves as social parasites by activating their ovaries, parthenogenetically producing diploid female offspring (thelytoky) and producing queen-like amounts of queen pheromones. All these traits have been shown to be strongly influenced by a single locus on chromosome 13 [Lattorff HMG, et al. (2007) Biol Lett 3:292–295]. We screened this region for candidate genes and found that alternative splicing of a gene homologous to the gemini transcription factor of Drosophila controls worker sterility. Knocking out the critical exon in a series of RNAi experiments resulted in rapid worker ovary activation—one of the traits characteristic of the social parasites. This genetic switch may be controlled by a short intronic splice enhancer motif of nine nucleotides attached to the alternative splice site. The lack of this motif in parasitic Cape honeybee clones suggests that the removal of nine nucleotides from the altruistic worker genome may be sufficient to turn a honeybee from an altruistic worker into a parasite
    corecore