27 research outputs found

    Diversity and Complexity of the Large Surface Protein Family in the Compacted Genomes of Multiple Pneumocystis Species

    Get PDF
    Pneumocystis, a major opportunistic pathogen in patients with a broad range of immunodeficiencies, contains abundant surface proteins encoded by a multicopy gene family, termed the major surface glycoprotein (Msg) gene superfamily. This superfamily has been identified in all Pneumocystis species characterized to date, highlighting its important role in Pneumocystis biology. In this report, through a comprehensive and in-depth characterization of 459 msg genes from 7 Pneurnocystis species, we demonstrate, for the first time, the phylogeny and evolution of conserved domains in Msg proteins and provide a detailed description of the classification, unique characteristics, and phylogenetic relatedness of five Msg families. We further describe, for the first time, the relative expression levels of individual msg families in two rodent Pneumocystis species, the substantial variability of the msg repertoires in P. coda from laboratory and wild rats, and the distinct features of the expression site for the classic msg genes in Pneumocystis from 8 mammalian host species. Our analysis suggests multiple functions for this superfamily rather than just conferring antigenic variation to allow immune evasion as previously believed. This study provides a rich source of information that lays the foundation for the continued experimental exploration of the functions of the Msg superfamily in Pneumocystis biology. IMPORTANCE Pneumocystis continues to be a major cause of disease in humans with immunodeficiency, especially those with HIV/AIDS and organ transplants, and is being seen with increasing frequency worldwide in patients treated with immunode-pleting monoclonal antibodies. Annual health care associated with Pneumocystis pneumonia costs similar to$475 million dollars in the United States alone. In addition to causing overt disease in immunodeficient individuals, Pneumocystis can cause subclinical infection or colonization in healthy individuals, which may play an important role in species preservation and disease transmission. Our work sheds new light on the diversity and complexity of the msg superfamily and strongly suggests that the versatility of this superfamily reflects multiple functions, including antigenic variation to allow immune evasion and optimal adaptation to host environmental conditions to promote efficient infection and transmission. These findings are essential to consider in developing new diagnostic and therapeutic strategies.Peer reviewe

    Prisoners’ Families’ Research: Developments, Debates and Directions

    Get PDF
    After many years of relative obscurity, research on prisoners’ families has gained significant momentum. It has expanded from case-oriented descriptive analyses of family experiences to longitudinal studies of child and family development and even macro analyses of the effects on communities in societies of mass incarceration. Now the field engages multi-disciplinary and international interest although it arguably still remains on the periphery of mainstream criminological, psychological and sociological research agendas. This chapter discusses developments in prisoners’ families’ research and its positioning in academia and practice. It does not aim to provide an all-encompassing review of the literature rather it will offer some reflections on how and why the field has developed as it has and on its future directions. The chapter is divided into three parts. The first discusses reasons for the historically small body of research on prisoners’ families and for the growth in research interest over the past two decades. The second analyses patterns and shifts in the focus of research studies and considers how the field has been shaped by intersecting disciplinary interests of psychology, sociology, criminology and socio-legal studies. The final part reflects on substantive and ethical issues that are likely to shape the direction of prisoners’ families’ research in the future

    Genetic mechanisms of critical illness in COVID-19.

    Get PDF
    Host-mediated lung inflammation is present1, and drives mortality2, in the critical illness caused by coronavirus disease 2019 (COVID-19). Host genetic variants associated with critical illness may identify mechanistic targets for therapeutic development3. Here we report the results of the GenOMICC (Genetics Of Mortality In Critical Care) genome-wide association study in 2,244 critically ill patients with COVID-19 from 208 UK intensive care units. We have identified and replicated the following new genome-wide significant associations: on chromosome 12q24.13 (rs10735079, P = 1.65 × 10-8) in a gene cluster that encodes antiviral restriction enzyme activators (OAS1, OAS2 and OAS3); on chromosome 19p13.2 (rs74956615, P = 2.3 × 10-8) near the gene that encodes tyrosine kinase 2 (TYK2); on chromosome 19p13.3 (rs2109069, P = 3.98 ×  10-12) within the gene that encodes dipeptidyl peptidase 9 (DPP9); and on chromosome 21q22.1 (rs2236757, P = 4.99 × 10-8) in the interferon receptor gene IFNAR2. We identified potential targets for repurposing of licensed medications: using Mendelian randomization, we found evidence that low expression of IFNAR2, or high expression of TYK2, are associated with life-threatening disease; and transcriptome-wide association in lung tissue revealed that high expression of the monocyte-macrophage chemotactic receptor CCR2 is associated with severe COVID-19. Our results identify robust genetic signals relating to key host antiviral defence mechanisms and mediators of inflammatory organ damage in COVID-19. Both mechanisms may be amenable to targeted treatment with existing drugs. However, large-scale randomized clinical trials will be essential before any change to clinical practice

    Gynesis. Configurations of Woman and Modernity

    No full text

    Toll-Like Receptor 3 Is Induced by and Mediates Antiviral Activity against Rhinovirus Infection of Human Bronchial Epithelial Cells

    No full text
    Rhinoviruses (RV) are the major cause of the common cold and acute exacerbations of asthma and chronic obstructive pulmonary disease. Toll-like receptors (TLRs) are a conserved family of receptors that recognize and respond to a variety of pathogen-associated molecular patterns. TLR3 recognizes double-stranded RNA, an important intermediate of many viral life cycles (including RV). The importance of TLR3 in host responses to virus infection is not known. Using BEAS-2B (a human bronchial epithelial cell-line), we demonstrated that RV replication increased the expression of TLR3 mRNA and TLR3 protein on the cell surface. We observed that blocking TLR3 led to a decrease in interleukin-6, CXCL8, and CCL5 in response to poly(IC) but an increase following RV infection. Finally, we demonstrated that TLR3 mediated the antiviral response. This study demonstrates an important functional requirement for TLR3 in the host response against live virus infection and indicates that poly(IC) is not always a good model for studying the biology of live virus infection

    Burden of care and quality of life among caregivers for adults receiving maintenance dialysis: a systematic review

    No full text
    Rationale & Objective: Dialysis is a burdensome and complex treatment for which many recipients require support from caregivers. The impact of caring for people dependent on dialysis on the quality of life of the caregivers has been incompletely characterized. Study Design: Systematic review of quantitative studies of quality of life and burden to caregivers. Setting & Study Population: Caregivers of adults receiving maintenance dialysis. Selection Criteria for Studies: The Cochrane Library, Embase, PsycINFO, CINAHL, PubMed, and MEDLINE were systematically searched from inception until December 2016 for quantitative studies of caregivers. Pediatric and non–English language studies were excluded. Study quality was assessed using a modified Newcastle-Ottawa scale. Data Extraction: 2 independent reviewers selected studies and extracted data using a prespecified extraction instrument. Analytical Approach: Descriptive reports of demographics, measurement scales, and outcomes. Quantitative meta-analysis using random effects when possible. Results: 61 studies were identified that included 5,367 caregivers from 21 countries and assessed the impact on caregivers using 70 different scales. Most (85%) studies were cross-sectional. The largest identified group of caregivers was female spouses who cared for recipients of facility-based hemodialysis (72.3%) or peritoneal dialysis (20.6%). Caregiver quality of life was poorer than in the general population, mostly comparable with caregivers of people with other chronic diseases, and often better than experienced by the dialysis patients cared for. Caregiver quality of life was comparable across dialysis modalities. Limitations: Heterogeneity in study design and outcome measures made comparisons between studies difficult and precluded quantitative meta-analysis. Study quality was generally poor. Conclusions: Quality of life of caregivers of dialysis recipients is poorer than in the general population and comparable to that of caregivers of individuals with other chronic diseases. The impact of caring for recipients of home hemodialysis or changes in the impact of caring over time have not been well studied. Further research is needed to optimally inform dialysis programs how to educate and support caregivers

    Single-cell transcriptomics reveals a distinct developmental state of KMT2A-rearranged infant B-cell acute lymphoblastic leukemia.

    Get PDF
    Funder: Lister Institute of Preventive Medicine; doi: https://doi.org/10.13039/501100001255Funder: Newcastle NIHR-Biomedical Research CentreKMT2A-rearranged infant ALL is an aggressive childhood leukemia with poor prognosis. Here, we investigated the developmental state of KMT2A-rearranged infant B-cell acute lymphoblastic leukemia (B-ALL) using bulk messenger RNA (mRNA) meta-analysis and examination of single lymphoblast transcriptomes against a developing bone marrow reference. KMT2A-rearranged infant B-ALL was uniquely dominated by an early lymphocyte precursor (ELP) state, whereas less adverse NUTM1-rearranged infant ALL demonstrated signals of later developing B cells, in line with most other childhood B-ALLs. We compared infant lymphoblasts with ELP cells and revealed that the cancer harbored hybrid myeloid-lymphoid features, including nonphysiological antigen combinations potentially targetable to achieve cancer specificity. We validated surface coexpression of exemplar combinations by flow cytometry. Through analysis of shared mutations in separate leukemias from a child with infant KMT2A-rearranged B-ALL relapsing as AML, we established that KMT2A rearrangement occurred in very early development, before hematopoietic specification, emphasizing that cell of origin cannot be inferred from the transcriptional state
    corecore