608 research outputs found

    The dermal skeleton of the jawless vertebrate Tremataspis mammilata (Osteostraci, stem-Gnathostomata)

    Get PDF
    Osteostracans are the closest jawless relatives of jawed vertebrates, informing the gradual assembly of the vertebrate mineralised skeleton. Conflicting interpretations of their dermal skeletal histology arise from failure to account for topological variation, obscuring their significance in elucidating vertebrate skeletal evolution. To resolve this, we characterize the cranial and trunk dermal skeleton of a single individual of Tremataspis mammilata (Osteostraci, Thyestiida) at submicron resolution using synchrotron tomography. Our results show that the architecture of the Tremataspis dermal skeleton is, for the most part, conserved over the skeleton and is broadly consistent with previous histological hypotheses based on 2-dimensional thin section study. We resolve debate over the homology of the basal layer, identifying it as osteogenic acellular isopedin rather than odontogenic elasmodine or metaplastic ossification of the stratum compactum of the dermis. We find topological variation between all dermal skeletal elements studied, and particularly between the cranial and postcranial dermal skeleton. This variation can be largely explained by reduction in differentiation due to geometric constraints imposed within smaller skeletal elements, such as scales. Our description of the dermal skeleton of Tremataspis mammilata provides a foundation for interpreting data from cursory topological samples of dermal skeletal diversity obtained in other osteostracans. This reveals general aspects of histological structure that must be primitive for osteostracans and, likely, ancestral jawed vertebrates. Finally, we draw the distinction between hypotheses and descriptions in palaeohistology

    How old are you? Newborn gestational age discriminates neonatal resuscitation practices in the Italian debate

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Multidisciplinary study groups have produced documents in an attempt to support decisions regarding whether to resuscitate "at risk" newborns or not. Moreover, there has been an increasingly insistent request for juridical regulation of neonatal resuscitation practices as well as for clarification of the role of parents in decisions regarding this kind of assistance. The crux of the matter is whether strict guidelines, reference standards based on the parameter of gestational age and authority rules are necessary.</p> <p>Discussion</p> <p>The Italian scenario reflects the current animated debate, illustrating the difficulty intrinsic in rigid guidelines on the subject, especially when gestational age is taken as a reference parameter for the medical decision.</p> <p>Summary</p> <p>Concerning the decision to interrupt or not to initiate resuscitation procedures on low gestational age newborns, physicians do not need rigid rules based on inflexible gestational age and birth weight guidelines. Guidance in addressing the difficult and trying issues associated with infants born at the margins of viability with a realistic assessment of the infant's clinical condition must be based on the infant's best interests, with clinicians and parents entering into what has been described as a "partnership of care".</p

    Representing addition and subtraction : learning the formal conventions

    Get PDF
    The study was designed to test the effects of a structured intervention in teaching children to represent addition and subtraction. In a post-test only control group design, 90 five-year-olds experienced the intervention entitled Bi-directional Translation whilst 90 control subjects experienced typical teaching. Post-intervention testing showed some significant differences between the two groups both in terms of being able to effect the addition and subtraction operations and in being able to determine which operation was appropriate. The results suggest that, contrary to historical practices, children's exploration of real world situations should precede practice in arithmetical symbol manipulation

    Magnetic field fluctuation properties of coronal mass ejection-driven sheath regions in the near-Earth solar wind

    Get PDF
    In this work, we investigate magnetic field fluctuations in three coronal mass ejection (CME)-driven sheath regions at 1 AU, with their speeds ranging from slow to fast. The data set we use consists primarily of high-resolution (0.092 s) magnetic field measurements from the Wind spacecraft. We analyse magnetic field fluctuation amplitudes, compressibility, and spectral properties of fluctuations. We also analyse intermittency using various approaches; we apply the partial variance of increments (PVIs) method, investigate probability distribution functions of fluctuations, including their skewness and kurtosis, and perform a structure function analysis. Our analysis is conducted separately for three different subregions within the sheath and one in the solar wind ahead of it, each 1 h in duration. We find that, for all cases, the transition from the solar wind ahead to the sheath generates new fluctuations, and the intermittency and compressibility increase, while the region closest to the ejecta leading edge resembled the solar wind ahead. The spectral indices exhibit large variability in different parts of the sheath but are typically steeper than Kolmogorov's in the inertial range. The structure function analysis produced generally the best fit with the extended p model, suggesting that turbulence is not fully developed in CME sheaths near Earth's orbit. Both Kraichnan-Iroshinikov and Kolmogorov's forms yielded high intermittency but different spectral slopes, thus questioning how well these models can describe turbulence in sheaths. At the smallest timescales investigated, the spectral indices indicate shallower than expected slopes in the dissipation range (between 2 and 2 :5), suggesting that, in CME-driven sheaths at 1 AU, the energy cascade from larger to smaller scales could still be ongoing through the ion scale. Many turbulent properties of sheaths (e.g. spectral indices and compressibility) resemble those of the slow wind rather than the fast. They are also partly similar to properties reported in the terrestrial magnetosheath, in particular regarding their intermittency, compressibility, and absence of Kolmogorov's type turbulence. Our study also reveals that turbulent properties can vary considerably within the sheath. This was particularly the case for the fast sheath behind the strong and quasi-parallel shock, including a small, coherent structure embedded close to its midpoint. Our results support the view of the complex formation of the sheath and different physical mechanisms playing a role in generating fluctuations in them.Peer reviewe

    The characteristics of solar x-class flares and CMEs: a paradigm for stellar superflares and eruptions?

    Get PDF
    This paper explores the characteristics of 42 solar X-class flares that were observed between February 2011 and November 2014, with data from the Solar Dynamics Observatory (SDO) and other sources. This flare list includes nine X-class flares that had no associated CMEs. In particular our aim was to determine whether a clear signature could be identified to differentiate powerful flares that have coronal mass ejections (CMEs) from those that do not. Part of the motivation for this study is the characterization of the solar paradigm for flare/CME occurrence as a possible guide to the stellar observations; hence we emphasize spectroscopic signatures. To do this we ask the following questions: Do all eruptive flares have long durations? Do CME-related flares stand out in terms of active-region size vs. flare duration? Do flare magnitudes correlate with sunspot areas, and, if so, are eruptive events distinguished? Is the occurrence of CMEs related to the fraction of the active-region area involved? Do X-class flares with no eruptions have weaker non-thermal signatures? Is the temperature dependence of evaporation different in eruptive and non-eruptive flares? Is EUV dimming only seen in eruptive flares? We find only one feature consistently associated with CME-related flares specifically: coronal dimming in lines characteristic of the quiet-Sun corona, i.e. 1 – 2 MK. We do not find a correlation between flare magnitude and sunspot areas. Although challenging, it will be of importance to model dimming for stellar cases and make suitable future plans for observations in the appropriate wavelength range in order to identify stellar CMEs consistently
    • …
    corecore