11 research outputs found

    Anti-Herpes Simplex Virus Efficacy of Silk Cocoon, Silkworm Pupa and Non-Sericin Extracts

    No full text
    Herpes simplex virus (HSV) infections are prevalent worldwide and are the cause of life- threatening diseases. Standard treatment with antiviral drugs, such as acyclovir, could prevent serious complications; however, resistance has been reported specifically among immunocompromised patients. Therefore, the development of an alternative approach is needed. The silk cocoon derived from silkworm, Bombyx mori, has been recognized for its broad-spectrum biological activity, including antiviral activity; however, its effects against HSV infection are unknown. In this study, we investigated the inhibitory effects of silk extracts derived from the cocoon shell, silk cocoon, silkworm pupa and non-sericin extract, on blocking HSV-1 and HSV-2 binding to host cells, resulting in the inhibition of the virus infection in Vero cells. Non-sericin extract demonstrated the greatest effectiveness on inhibiting HSV-1 and HSV-2 binding activity. Moreover, the virucidal effect to inactivate HSV-1 and HSV-2 was determined and revealed that non-sericin extract also exerted the highest potential activity. Using the treatment of non-sericin extract in HSV-2-infected HeLa cells could significantly lower the HSV-induced cell death and prevent inflammation via lowering the inflammatory cytokine gene expression. The non-sericin extract was analyzed for its bioactive compounds in which gallic acid, flavonoid and xanthophyll were identified, and might have partially contributed to its antiviral activity. The finding in our study suggested the potential of silk extract as an alternative therapeutic treatment for HSV infection

    Activities of different types of Thai honey on pathogenic bacteria causing skin diseases, tyrosinase enzyme and generating free radicals

    No full text
    BACKGROUND: Honey is a natural product obtained from the nectar that is collected from flowers by bees. It has several properties, including those of being food and supplementary diet, and it can be used in cosmetic products. Honey imparts pharmaceutical properties since it has antibacterial and antioxidant activities. The antibacterial and antioxidant activities of Thai honey were investigated in this study. RESULTS: The honey from longan flower (source No. 1) gave the highest activity on MRSA when compared to the other types of honey, with a minimum inhibitory concentration of 12.5% (v/v) and minimum bactericidal concentration of 25% (v/v). Moreover, it was found that MRSA isolate 49 and S. aureus were completely inhibited by the 50% (v/v) longan honey (source No. 1) at 8 and 20 hours of treatment, respectively. Furthermore, it was observed that the honey from coffee pollen (source No. 4) showed the highest phenolic and flavonoid compounds by 734.76 mg gallic/kg of honey and 178.31 mg quercetin/kg of honey, respectively. The antioxidant activity of the honey obtained from coffee pollen was also found to be the highest, when investigated using FRAP and DPPH assay, with 1781.77 mg FeSO4•7H2O/kg of honey and 86.20 mg gallic/kg of honey, respectively. Additionally, inhibition of tyrosinase enzyme was found that honey from coffee flower showed highest inhibition by 63.46%. CONCLUSIONS: Honey demonstrates tremendous potential as a useful source that provides anti-free radicals, anti-tyrosinase and anti-bacterial activity against pathogenic bacteria causing skin diseases

    Anthocyanins in Red Jasmine Rice (Oryza sativa L.) Extracts and Efficacy on Inhibition of Herpes Simplex Virus, Free Radicals and Cancer Cell

    No full text
    Rice is one of the most important food crops in many countries, with nutritional value and health benefits. In this study, the ethanolic and aqueous extracts of red jasmine rice from Chiang Mai, Thailand were examined for their anthocyanins and phenolic contents. The antioxidant and antiviral activity against herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2), as well as anticancer activity, were investigated. The total anthocyanins content of 708.03 ± 11.56 mg Cy-3-glc equivalent/g extract, determined from the ethanolic extract, was higher than the aqueous extract. However, the aqueous extract showed the highest total phenolic compound of 81.91 ± 0.51 mg GAE/g extract. In addition, the ethanolic extract demonstrated higher antioxidant activity than aqueous extract using DPPH, ABTS, and FRAP assays by 28.91 ± 3.26 mg GAE/g extract, 189.45 ± 11.58 mg 24 TEAC/g extract, and 3292.46 ± 259.64 g FeSO4/g extract, respectively. In the antiviral assay, it was found that the ethanolic extract of red jasmine rice could inhibit HSV-1 more effectively than HSV-2 when treated before, during, and after the viral attachment on Vero cells, with 50% effective doses of 227.53 ± 2.41, 189.59 ± 7.76, and 192.62 ± 2.40 µg/mL, respectively. The extract also demonstrated the highest reduction of HSV-1 particles at 4 h after treatment and the inhibition of HSV-1 replication. The ethanolic extract exhibited a higher toxicity level than the aqueous extract, as well as the potential to induce DNA fragmentation by intrinsic and extrinsic apoptosis pathways on the Caco-2 cells. These findings suggest that red jasmine rice extract demonstrates nutritional value and biological activity on HSV, free radicals, and cancer cell inhibition

    Fabrication and Characterization of Human Serum Albumin Particles Loaded with Non-Sericin Extract Obtained from Silk Cocoon as a Carrier System for Hydrophobic Substances

    No full text
    Non-sericin (NS) extract was produced from the ethanolic extract of Bombyx mori silk cocoons. This extract is composed of both carotenoids and flavonoids. Many of these compounds are composed of substances of poor aqueous solubility. Thus, this study focused on the development of a carrier system created from biocompatible and biodegradable materials to improve the biological activity of NS extracts. Accordingly, NS was incorporated into human serum albumin template particles with MnCO3 (NS-HSA MPs) by loading NS into the preformed HAS-MnCO3 microparticles using the coprecipitation crosslinking dissolution technique (CCD-technique). After crosslinking and template dissolution steps, the NS loaded HSA particles are negatively charged, have a size ranging from 0.8 to 0.9 µm, and are peanut shaped. The degree of encapsulation efficiency ranged from 7% to 57% depending on the initial NS concentration and the steps of adsorption. In addition, NS-HSA MPs were taken up by human lung adenocarcinoma (A549 cell) for 24 h. The promotion of cellular uptake was evaluated by flow cytometry and the results produced 99% fluorescent stained cells. Moreover, the results from CLSM and 3D fluorescence imaging confirmed particle localization in the cells. Interestingly, NS-HSA MPs could not induce inflammation through nitric oxide production from macrophage RAW264.7 cells. This is the first study involving the loading of non-sericin extracts into HSA MPs by CCD technique to enhance the bioavailability and biological effects of NS. Therefore, HSA MPs could be utilized as a carrier system for hydrophobic substances targeting cells with albumin receptors

    Fabrication and Characterization of Human Serum Albumin Particles Loaded with Non-Sericin Extract Obtained from Silk Cocoon as a Carrier System for Hydrophobic Substances

    Get PDF
    Non-sericin (NS) extract was produced from the ethanolic extract of Bombyx mori silk cocoons. This extract is composed of both carotenoids and flavonoids. Many of these compounds are composed of substances of poor aqueous solubility. Thus, this study focused on the development of a carrier system created from biocompatible and biodegradable materials to improve the biological activity of NS extracts. Accordingly, NS was incorporated into human serum albumin template particles with MnCO3 (NS-HSA MPs) by loading NS into the preformed HAS-MnCO3 microparticles using the coprecipitation crosslinking dissolution technique (CCD-technique). After crosslinking and template dissolution steps, the NS loaded HSA particles are negatively charged, have a size ranging from 0.8 to 0.9 mu m, and are peanut shaped. The degree of encapsulation efficiency ranged from 7% to 57% depending on the initial NS concentration and the steps of adsorption. In addition, NS-HSA MPs were taken up by human lung adenocarcinoma (A549 cell) for 24 h. The promotion of cellular uptake was evaluated by flow cytometry and the results produced 99% fluorescent stained cells. Moreover, the results from CLSM and 3D fluorescence imaging confirmed particle localization in the cells. Interestingly, NS-HSA MPs could not induce inflammation through nitric oxide production from macrophage RAW264.7 cells. This is the first study involving the loading of non-sericin extracts into HSA MPs by CCD technique to enhance the bioavailability and biological effects of NS. Therefore, HSA MPs could be utilized as a carrier system for hydrophobic substances targeting cells with albumin receptors

    Triphala in Traditional Ayurvedic Medicine Inhibits Dengue Virus Infection in Huh7 Hepatoma Cells

    No full text
    Traditional Triphala (three fruits), consisting of Phyllanthus emblica, Terminalia chebula, and Terminalia bellirica, presents a broad range of biological activities. However, its ability to inhibit dengue virus (DENV) infection has not been reported yet. Herein, the authors investigated the efficiency of three different Triphala formulations and its individual extract constituents to inhibit DENV infection. Treatment with T. bellirica extract or Triphala formulated with a high ratio of T. bellirica extract showed remarkable efficiency in significantly lowering DENV infection in Vero cells. Their effects were further studied in Huh7 cells, to address its potential ability in human cells. Treatment with 100 μg/mL of T. bellirica extract or Triphala resulted in an approximate 3000-fold or 1000-fold lowering of virus production, respectively. Furthermore, the treatment diminished IL-6 and CXCL-10 expressions, which are the hallmark of the cytokine storm phenomenon in DENV infection. The HPLC profiling demonstrated gallic acid as a major compound, the treatment by which showed its ability to effectively inhibit DENV infection after virus entry. Molecular docking demonstrated that gallic acid was able to interact with DENV NS5 protein, which could be one of Triphala’s antiviral mechanism. This study offers Triphala formulation and its ingredient, T. bellirica extract, as a natural based pharmaceutical to be used in DENV infection treatment

    Cordycepin Inhibits Virus Replication in Dengue Virus-Infected Vero Cells

    No full text
    Dengue virus (DENV) infection causes mild to severe illness in humans that can lead to fatality in severe cases. Currently, no specific drug is available for the treatment of DENV infection. Thus, the development of an anti-DENV drug is urgently required. Cordycepin (3′-deoxyadenosine), which is a major bioactive compound in Cordyceps (ascomycete) fungus that has been used for centuries in Chinese traditional medicine, was reported to exhibit antiviral activity. However, the anti-DENV activity of cordycepin is unknown. We hypothesized that cordycepin exerts anti-DENV activity and that, as an adenosine derivative, it inhibits DENV replication. To test this hypothesis, we investigated the anti-DENV activity of cordycepin in DENV-infected Vero cells. Cordycepin treatment significantly decreased DENV protein at a half-maximal effective concentration (EC50) of 26.94 μM. Moreover, DENV RNA was dramatically decreased in cordycepin-treated Vero cells, indicating its effectiveness in inhibiting viral RNA replication. Via in silico molecular docking, the binding of cordycepin to DENV non-structural protein 5 (NS5), which is an important enzyme for RNA synthesis, at both the methyltransferase (MTase) and RNA-dependent RNA polymerase (RdRp) domains, was predicted. The results of this study demonstrate that cordycepin is able to inhibit DENV replication, which portends its potential as an anti-dengue therapy

    Antioxidant activity and enzyme inhibitory potential of Euphorbia resinifera and E. officinarum honeys from Morocco and plant aqueous extracts

    Get PDF
    Natural products may be applied in a wide range of domains, from agriculture to food and pharmaceutical industries. In this study, the antioxidant properties and the capacity to inhibit some enzymatic activities ofEuphorbia resiniferaandEuphorbia officinarumaqueous extracts and honeys were assessed. The physicochemical characteristics were also evaluated. Higher amounts of iron, copper and aluminium were detected inE. officinarumhoney, which may indicate environmental pollution around the beehives or inadequate storage of honey samples. This honey sample showed higher amounts of total phenols and better capacity for scavenging superoxide anion free radicals and DPPH free radicals as compared withE. resiniferahoney, but poorer capacity for inhibiting lipoxygenase, acetylcholinesterase, tyrosinase and xanthine oxidase. The ratio plant mass:solvent volume (1:100) and extraction time (1 - 2 h) were associated with higher total phenols and better antioxidant activities and lipoxygenase, acetylcholinesterase and tyrosinase inhibitory activities, regardless of the plant species. The aqueous extracts had systematically higher in vitro activities than the respective honey samples.FCTPortuguese Foundation for Science and TechnologyEuropean Commission [UID/MAR/00350/2020]info:eu-repo/semantics/publishedVersio
    corecore