255 research outputs found

    Sequential ejectile decays and uncorrelated breakup processes in the 14N + 159Tb reaction

    Get PDF
    From a study of particle-particle correlations, involving position-sensitive detector telescopes, conclusive evidence for sequential ejectile decay was found, and the relative importance of sequential decay and of breakup processes, which were observed to be uncorrelated in angle, could be determined

    High-spin states in 232U investigated with the 232Th(α, 4nγ) reaction

    Get PDF
    The ground-state rotational band of 232U is established up to Iπ = 16+ (tentatively 18+) through a study of the 232Th(α, 4nγ) reaction. Conversion electron spectroscopy is found to be especially useful in circumventing the difficulties caused by strong fission competition

    Evolution of the one-phonon 2(1,ms)(+) mixed-symmetry state in N=80 isotones as a local measure for the proton-neutron quadrupole interaction

    Get PDF
    An inverse kinematics Coulomb excitation experiment was performed to obtain absolute E2 and M1 transition strengths in 134Xe. The measured transition strengths indicate that the 23+ state of 134Xe is the dominant fragment of the one-phonon 21, ms+ mixed-symmetry state. Comparing the energy of the 21, ms+ mixed-symmetry state in 134Xe to that of the 21, ms+ levels in the N = 80 isotonic chain indicates that the separation in energy between the fully-symmetric 21+ state and the 21, ms+ level increases as a function of the number of proton pairs outside the Z = 50 shell closure. This behavior can be understood as resulting from the mixing of the basic components of a two-fluid quantum system. A phenomenological fit based on this concept was performed. It provides the first experimental estimate of the strength of the proton-neutron quadrupole interaction derived from nuclear collective states with symmetric and antisymmetric nature

    Possible quenching of static neutron pairing near the N=98 deformed shell gap: Rotational structures in Gd-160,Gd-161

    Get PDF
    A Gd160 beam was accelerated to an energy of 1000 MeV and, separately, bombarded thick targets of Sm154 and Dy164 in order to observe neutron-rich, rare-earth nuclei via deep-inelastic collision processes. Gammasphere was utilized to observe ?-ray emissions. Many new states and transitions were observed in Gd160 as a result of so-called unsafe Coulomb excitation. The ground-state band in Gd160 has been extended to Ip=20+ and a rotational band based on the Kp=4+ state, previously associated with a hexadecapole vibration, was observed up to 18+. The quasiparticle configuration of the Kp=4+ band has been determined, and its unusual alignment behavior may result from a possible quenching of static neutron pairing. In addition, the band based on the [523]5/2 quasineutron orbital in Gd161 was extended from 11/2- to 33/2- and also displays the same unusual alignment behavior

    Backbending, seniority, and Pauli blocking of pairing correlations at high rotational frequencies in rapidly rotating nuclei

    Get PDF
    Garrett et al. systematically investigated band-crossing frequencies resulting from the rotational alignment of the first pair of i13/2 neutrons (AB) in rare-earth nuclei. In that study, evidence was found for an odd-even neutron number dependence attributed to changes in the strength of neutron pairing correlations. The present paper carries out a similar investigation at higher rotational frequencies for the second pair of aligning i13/2 neutrons (BC). Again, a systematic difference in band-crossing frequencies is observed between odd-N and even-N Er, Yb, Hf, and W nuclei, but in the BC case, it is opposite to the AB neutron-number dependence. These results are discussed in terms of a reduction of neutron pairing correlations at high rotational frequencies and of the effects of Pauli blocking on the pairing field by higher-seniority configurations. Also playing a significant role are the changes in deformation with proton and neutron numbers, the changes in location of single-particle orbitals as a function of quadrupole deformation, and the position of the Fermi surface with regard to the various ω components of the neutron i13/2 shell
    • …
    corecore