22 research outputs found

    EARLINET instrument intercomparison campaigns: overview on strategy and results

    Get PDF
    This paper introduces the recent European Aerosol Research Lidar Network (EARLINET) quality-assurance efforts at instrument level. Within two dedicated campaigns and five single-site intercomparison activities, 21 EARLINET systems from 18 EARLINET stations were intercompared between 2009 and 2013. A comprehensive strategy for campaign setup and data evaluation has been established. Eleven systems from nine EARLINET stations participated in the EARLINET Lidar Intercomparison 2009 (EARLI09). In this campaign, three reference systems were qualified which served as traveling standards thereafter. EARLINET systems from nine other stations have been compared against these reference systems since 2009. We present and discuss comparisons at signal and at product level from all campaigns for more than 100 individual measurement channels at the wavelengths of 355, 387, 532, and 607¿nm. It is shown that in most cases, a very good agreement of the compared systems with the respective reference is obtained. Mean signal deviations in predefined height ranges are typically below ±2¿%. Particle backscatter and extinction coefficients agree within ±2¿¿×¿¿10-4¿km-1¿sr-1 and ±¿0.01¿km-1, respectively, in most cases. For systems or channels that showed larger discrepancies, an in-depth analysis of deficiencies was performed and technical solutions and upgrades were proposed and realized. The intercomparisons have reinforced confidence in the EARLINET data quality and allowed us to draw conclusions on necessary system improvements for some instruments and to identify major challenges that need to be tackled in the future.Peer ReviewedPostprint (published version

    Microwave brightness temperature measurements during the MOSAiC-ACA Arctic airborne campaign in late summer 2020 out of Svalbard

    No full text
    The data set contains measurements performed by the passive radiometer Humidity and And Temperature PROfiler (HATPRO) operated on board the Polar 5 research aircraft during 10 flights of the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) Airborne observations in the Central Arctic (MOSAiC-ACA) campaign, carried out in late summer 2020 northwest of Svalbard (Norway). The measurement campaign is embedded in the Transregional Collaborative Research Centre TR 172 (ArctiC Amplification: Climate Relevant Atmospheric and SurfaCe Processes, and Feedback Mechanisms (AC)3. The published data set consists of brightness temperature measurements at nadir view with respect to the aircrafts fuselage at seven frequencies in the 22.24 GHz water vapor absorption band and seven at the 60 GHz oxygen absorption complex. It should be considerd, that the brightness temperatures have not been corrected for aircraft attitude. The data set has been quality checked and is available in netcdf format for each flight separately

    Integrated water vapour observations in the Caribbean arc from a network of ground-based GNSS receivers during EUREC4A

    Get PDF
    International audienceGround-based Global Navigation Satellite System (GNSS) measurements from nearly fifty stations distributed over the Caribbean Arc have been analysed for the period 1 January-29 February 2020 in the framework of the EUREC 4 A (Elucidate the Couplings Between Clouds, Convection and Circulation) field campaign. The aim of this effort is to deliver high-quality Integrated Water Vapour (IWV) estimates to investigate the moisture environment of mesoscale cloud patterns in the Tradewinds and their feedback on the large-scale circulation and energy budget. This paper describes the GNSS data processing procedures and assesses the quality of the GNSS IWV retrievals from four operational streams and one reprocessed research stream which is the main data set used for offline scientific applications

    IWV observations from a network of ground-based GNSS receivers during EUREC4A

    No full text
    International audienceIWV data were retrieved from a network of nearly fifty Global Navigation Satellite System (GNSS) stations distributed over the Caribbean arc for the period 1 January-29 February 2020 encompassing the EUREC4A field campaign. Two of the stations had been installed at the Barbados Cloud Observatory (BCO) during fall 2019 in the framework of the project and are still running. All other stations are permanent stations operated routinely from various geodetic and geophysical organisations in the region. High spatial and temporal Integrated Water Vapour (IWV) observations will be used to investigate the atmospheric environment during the life cycle of convection and its feedback on the large-scale circulation and energy budget.</p><p>This paper describes the ground-based GNSS data processing details and assesses the quality of the GNSS IWV retrievals as well as the IWV estimates from radiosoundings, microwave radiometer measurements and ERA5 reanalysis.</p><p>The GNSS results from five different processing streams run by IGN and ENSTA-B/IPGP are first intercompared. Four of the streams were run operationally, among one was in near-real time, and one was run after the campaign in a reprocessing mode. The uncertainties associated with each of the data sets, including the zenith tropospheric delay to IWV conversion methods and auxiliary data, are quantified and discussed. The IWV estimates from the reprocessed data set are compared to the Vaisala RS41 radiosonde measurements operated from the BCO and to the measurements from the operational radiosonde station at Grantley Adams international airport (GAIA). A significant dry bias is found in the GAIA humidity observations with respect to the BCO sondes (-2.9 kg/m2) and the GNSS results (-1.2 kg/m2). A systematic bias between the BCO sondes and GNSS is also observed (1.7 kg/m2) where the Vaisala RS41 measurements are moister than the GNSS retrievals. The HATPRO IWV estimates agree with the BCO soundings after an instrumental update on 27 January, while they exhibit a dry bias compared to GNSS and BCO sondes before that date. ERA5 IWV estimates are overall close to the GAIA observations, probably due to the assimilation of these observations in the reanalysis. However, during several events where strong peaks in IWV occurred, ERA5 is shown to significantly underestimate the IWV peaks. Two successive peaks are observed on 22 January and 23/24 January which were associated with heavy rain and deep moist layers extending from the surface up to altitudes of 3.5 and 5 km, respectively. ERA5 significantly underestimates the moisture content in the upper part of these layers. The origins of the various moisture biases are currently being investigated.</p&gt

    How Rossby wave breaking modulates the water cycle in the North Atlantic trade wind region

    Get PDF
    International audienceAbstract. The interaction between low-level tropical clouds and the large-scale circulation is a key feedback element in our climate system, but our understanding of it is still fragmentary. In this paper, the role of upper-level extratropical dynamics for the development of contrasting shallow cumulus cloud patterns in the western North Atlantic trade wind region is investigated. Stable water isotopes are used as tracers for the origin of air parcels arriving in the sub-cloud layer above Barbados, measured continuously in water vapour at the Barbados Cloud Observatory during a 24 d measurement campaign (isoTrades, 25 January to 17 February 2018). These data are combined with a detailed air parcel back-trajectory analysis using hourly ERA5 reanalyses of the European Centre for Medium-Range Weather Forecasts. A climatological investigation of the 10 d air parcel history for January and February in the recent decade shows that 55 % of the air parcels arriving in the sub-cloud layer have spent at least 1 d in the extratropics (north of 35∘ N) before arriving in the eastern Caribbean at about 13∘ N. In 2018, this share of air parcels with extratropical origin was anomalously large, with 88 %. In two detailed case studies during the campaign, two flow regimes with distinct isotope signatures transporting extratropical air into the Caribbean are investigated. In both regimes, the air parcels descend from the lower part of the midlatitude jet stream towards the Equator, at the eastern edge of subtropical anticyclones, in the context of Rossby wave breaking events. The zonal location of the wave breaking and the surface anticyclone determine the dominant transport regime. The first regime represents the “typical” trade wind situation, with easterly winds bringing moist air from the eastern North Atlantic into the Caribbean, in a deep layer from the surface up to ∼600 hPa. The moisture source of the sub-cloud layer water vapour is located on average 2000 km upstream of Barbados. In this regime, Rossby wave breaking and the descent of air from the extratropics occur in the eastern North Atlantic, at about 33∘ W. The second regime is associated with air parcels descending slantwise by on average 300 hPa (6 d)−1 directly from the north-east, i.e. at about 50∘ W. These originally dry airstreams experience a more rapid moistening than typical trade wind air parcels when interacting with the subtropical oceanic boundary layer, with moisture sources being located on average 1350 km upstream to the north-east of Barbados. The descent of dry air in the second regime can be steered towards the Caribbean by the interplay of a persistent upper-level cut-off low over the central North Atlantic (about 45∘ W) and the associated surface cyclone underneath. The zonal location of Rossby wave breaking and, consequently, the pathway of extratropical air towards the Caribbean are shown to be relevant for the sub-cloud layer humidity and shallow-cumulus-cloud-cover properties of the North Atlantic winter trades. Overall, this study highlights the importance of extratropical dynamical processes for the tropical water cycle and reveals that these processes lead to a substantial modulation of stable water isotope signals in the near-surface humidity

    A unified data set of airborne cloud remote sensing using the HALO Microwave Package (HAMP)

    Get PDF
    Cloud properties and their environmental conditions were observed during four aircraft campaigns over the North Atlantic on 37 flights. The Halo Microwave Package (HAMP) was deployed on the German research aircraft HALO (High Al- titude LOng range research aircraft) during these four campaigns. HAMP comprises microwave radiometers with 26 channels in the frequency range between 20 and 183 GHz and a 35 GHz cloud radar. The four campaigns took place between December 2013 and October 2016 out of Barbados and Iceland. Measured situations cover a wide range of conditions including the dry 5 and wet season over the tropical Atlantic and the cold and warm sectors of mid-latitude cyclones. The data set we present here contains measurements of the radar reflectivity factor and linear depolarization ratio from cloud radar, brightness temperatures from microwave radiometers, and atmospheric profiles from dropsondes. It represents a unique combination of active and passive microwave remote sensing measurements and 525 in-situ measured dropsonde profiles. The data from these different instruments are quality controlled and unified into one common format for easy combination of data and joint analysis. The 10 data are available from the CERA database for the four campaigns individually (doi: xxxx , xxxx , xxxx , xxxx ). This data set al- lows for analyses to get insight into cloud properties and atmospheric state in remote regions over the tropical and mid-latitude Atlantic. In this paper, we describe the four campaigns, the data, and the quality control applied to the data

    Unified Airborne Active and Passive Microwave Measurements over Arctic Sea Ice and Ocean during the HALO-(AC)³ Campaign in Spring 2022

    No full text
    The Halo Microwave Package (HAMP), deployed onboard the High Altitude and LOng range research aircraft (HALO), performed measurements over the Arctic ocean and sea-ice during the HALO-(AC)³ campaign in March and April 2022. After the transfer flight (RF01) from Oberpfaffenhofen (Germany), 17 research flight (RF) days started from Kiruna, Sweden and heading northwards to the Fram Strait and central Arctic. Here, HAMP measurements were taken in different weather conditions comprising high impact synoptic events such as warm air intrusions, atmospheric rivers, cold air outbreaks or polar lows. We provide a dataset of active and passive microwave HAMP measurements, i.e. from the cloud and precipitation radar and the radiometers respectively. The radar operates at a frequency of 35 GHz while the microwave radiometer measurements comprise 25 channels in the frequency range between 22 and 190 GHz. Our dataset delivers time-series of brightness temperatures from the radiometers, and the radar reflectivity factor and linear depolarization ratio from the radar in a unified format. The unified and processed dataset provides the post-calibrated and quality-controlled measurements from both devices in a collocated temporal 1 Hz resolution applicable for joint analysis. An adherent surface mask distinguishes between three predominant overpassed surface types (land, sea, and sea-ice). The radar measurements are further unified in a vertical grid having 30 m resolution. Our unified dataset allows for wide-spread analysis of evolving arctic cloud and moisture properties over the remote Arctic ocean

    Earlinet instrument intercomparison campaigns: overview on strategy and results

    No full text
    This paper introduces the recent European Aerosol Research Lidar Network (EARLINET) quality-assurance efforts at instrument level. Within two dedicated campaigns and five single-site intercomparison activities, 21 EARLINET systems from 18 EARLINET stations were intercompared between 2009 and 2013. A comprehensive strategy for campaign setup and data evaluation has been established. Eleven systems from nine EARLINET stations participated in the EARLINET Lidar Intercomparison 2009 (EARLI09). In this campaign, three reference systems were qualified which served as traveling standards thereafter. EARLINET systems from nine other stations have been compared against these reference systems since 2009. We present and discuss comparisons at signal and at product level from all campaigns for more than 100 individual measurement channels at the wavelengths of 355, 387, 532, and 607 nm. It is shown that in most cases, a very good agreement of the compared systems with the respective reference is obtained. Mean signal deviations in predefined height ranges are typically below +/- 2 %. Particle backscatter and extinction coefficients agree within +/- 2 x 10(-4) km(-1) sr(-1) and +/- 0.01 km(-1), respectively, in most cases. For systems or channels that showed larger discrepancies, an in-depth analysis of deficiencies was performed and technical solutions and upgrades were proposed and realized. The intercomparisons have reinforced confidence in the EARLINET data quality and allowed us to draw conclusions on necessary system improvements for some instruments and to identify major challenges that need to be tackled in the future
    corecore