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Abstract. This paper introduces the recent European Aerosol

Research Lidar Network (EARLINET) quality-assurance ef-

forts at instrument level. Within two dedicated campaigns

and five single-site intercomparison activities, 21 EAR-

LINET systems from 18 EARLINET stations were inter-

compared between 2009 and 2013. A comprehensive strat-

egy for campaign setup and data evaluation has been es-

tablished. Eleven systems from nine EARLINET stations

participated in the EARLINET Lidar Intercomparison 2009

(EARLI09). In this campaign, three reference systems were

qualified which served as traveling standards thereafter.

EARLINET systems from nine other stations have been com-

pared against these reference systems since 2009. We present

and discuss comparisons at signal and at product level from

all campaigns for more than 100 individual measurement

channels at the wavelengths of 355, 387, 532, and 607 nm.

It is shown that in most cases, a very good agreement of the

compared systems with the respective reference is obtained.

Mean signal deviations in predefined height ranges are typi-

cally below ±2 %. Particle backscatter and extinction coeffi-

cients agree within ±2× 10−4 km−1 sr−1 and ± 0.01 km−1,

respectively, in most cases. For systems or channels that

showed larger discrepancies, an in-depth analysis of defi-

ciencies was performed and technical solutions and upgrades

were proposed and realized. The intercomparisons have re-

inforced confidence in the EARLINET data quality and al-

lowed us to draw conclusions on necessary system improve-

ments for some instruments and to identify major challenges

that need to be tackled in the future.

1 Introduction

The European Aerosol Research Lidar Network (EAR-

LINET) was founded in the year 2000 with the major goal

to establish an aerosol climatology for Europe (Pappalardo

et al., 2014). The network has been continuously growing

and currently consists of 27 stations with about 35 individ-

ual lidar systems distributed over 16 European countries. Al-

though all systems are specifically designed for aerosol ob-

servations in the troposphere and, partly, the stratosphere,

the network comprises a large variety of individual technical

solutions from small laboratory-based systems to medium-

sized portable lidars and large container-based instruments.

Moreover, technical improvements, resulting to a large ex-

tent from exchange of expertise within the network, lead to

continuous alterations of the setups. Because of this diver-

sity, the need for a rigorous quality-assurance (QA) program

was very clear right from the start of the EARLINET initia-

tive. Consequently, great effort was put into QA activities at

the instrument and algorithm levels over the years.

In the first phase of EARLINET from 2000 to 2003, when

EARLINET was implemented as a research project sup-

ported by the European Commission under the Fifth Frame-

work Programme, QA activities were focussed on intercom-

parisons of lidar systems (Matthias et al., 2004) and of data-

evaluation algorithms (Böckmann et al., 2004; Pappalardo

et al., 2004). In order to check the quality of the instruments

within the network, an intercomparison strategy was devel-

oped based on the application of reference lidar systems that

can serve as traveling standards (Matthias et al., 2004). All 19

EARLINET systems, which were part of the network at that

time, had been intercompared, some in dedicated campaigns,

but most of them pairwise by comparison with the mobile

reference systems from the EARLINET stations in Ham-

burg and Munich. Comparisons were exclusively performed

for the products provided to the EARLINET database, i.e.,

profiles of particle backscatter and extinction coefficients

(Matthias et al., 2004). As a general result, it was found

that typical mean deviations of particle backscatter coeffi-

cients were 10 % in the planetary boundary layer (PBL) and

1× 10−4 km−1 sr−1 in the free troposphere and thus well be-

low the thresholds of 25 % and 5× 10−4 km−1 sr−1, respec-

tively, representing the predefined quality criteria. Only few
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comparisons were made for particle extinction coefficients,

but mean deviations were also small in these cases with val-

ues of less than 5 % or 0.01 km−1.

During EARLINET–ASOS (Advanced Sustainable Ob-

servation System), an Integrated Activity within the Sixth

Framework Programme from 2006 to 2011, QA activities

were intensified and included also the development of tools

for internal tests of accuracy and temporal stability of indi-

vidual lidar systems at any time, i.e., independent of dedi-

cated intercomparisons with reference instruments (Freuden-

thaler et al., 2016). The QA activities have been continued

in the framework of ACTRIS (Aerosols, Clouds, and Trace

gases Research InfraStructure; funded as Integrated Infras-

tructure Initiative in the Seventh Framework Programme and

as Integrating Activity in Horizon 2020), part of which EAR-

LINET has been since April 2011.

In this paper, we report on instrument intercomparison

campaigns performed within EARLINET–ASOS and AC-

TRIS from 2009 to 2013. Focus of the activities was on

the development and test of new reference systems, the in-

tegration of new EARLINET stations, and the test of new

or considerably enhanced instruments at initial EARLINET

stations. It should be noted that in the period from 2000 to

2003 the major goal of EARLINET was to provide inde-

pendent measurements of particle extinction and backscat-

ter coefficients by applying the Raman lidar method at least

at one wavelength, preferably in the UV. Since then, a large

number of EARLINET instruments have been upgraded to

so-called 3+ 2 Raman lidar systems. The term 3+ 2 stands

for the independent measurement of three backscatter coef-

ficients (at 355, 532, and 1064 nm) and two extinction co-

efficients (at 355 and 532 nm) by the use of an Nd:YAG

laser with frequency doubling and tripling and the detection

of elastic-backscatter signals at the three laser wavelengths

and of vibration-rotation or pure rotational Raman signals of

a reference gas (nitrogen and/or oxygen) at the two shorter

wavelengths. With this measurement capability it is possi-

ble to retrieve not only optical but also microphysical par-

ticle properties (e.g., Müller et al., 1999; Veselovskii et al.,

2002; Böckmann et al., 2005; Müller et al., 2015). In the first

EARLINET period, 11 out of the 19 EARLINET stations

delivered extinction and backscatter coefficients in the UV,

but only two of them were 3+ 2 systems (Matthias et al.,

2004). Currently (in 2015), there are 22 3+ 2 systems at

18 EARLINET stations, and their number is steadily grow-

ing. Many systems have polarization measurement capabil-

ities in addition, i.e., the particle linear depolarization ratio

is measured at least at one wavelength (Freudenthaler et al.,

2009; Belegante et al., 2016; Bravo-Aranda et al., 2016). This

quantity contains information about the presence of large,

nonspherical particles and is an indispensable parameter for

aerosol typing, in particular for the identification of mineral

dust in the atmosphere.

The increased number and complexity of lidar systems

within the network requires also an improved QA strategy.

The major challenge of the QA efforts lies in the fact that

absolute calibration techniques for aerosol lidar systems do

not exist and that it is practically impossible to validate

aerosol lidar products by comparison with independent mea-

surements externally, e.g., from balloon-borne in situ obser-

vations as it is done in the case of water-vapor or ozone li-

dars (e.g., Leblanc et al., 2011; Nair et al., 2012). Thus, the

direct intercomparison of collocated instruments is the only

objective and commonly accepted way to assess the overall

performance of individual aerosol lidars. The general goal

of such an intercomparison is to identify principal deficien-

cies, which may lead to systematic errors of the aerosol lidar

products or unreliable results in specific parts of the profile.

For instance, in the near range, lidar systems may suffer

from electronic saturation effects, uncertain optical overlap

functions, and nonlinear signal distortions. In the far range,

the limited dynamic range of data acquisition, together with

electronic signal perturbance, may hinder appropriate back-

ground substraction and Rayleigh calibration. Also, principal

optical misalignments or even system design errors may be

discovered. Therefore, a two-step intercomparison strategy

is now applied for EARLINET, starting with a comparison at

signal level to detect the validity range and the uncertainties

of each individual signal part, followed by the comparison of

aerosol products derived from (partly combined) lidar pro-

files.

In order to cover the larger number of network stations and

to become more flexible with the intercomparison strategy,

it was decided within EARLINET–ASOS to define several

mobile systems as reference lidars. Two 3+ 2 systems with

polarization capability have been newly developed for this

purpose by the EARLINET groups in Hamburg and Potenza.

It was envisaged to perform, in a first step, a specific inter-

comparison campaign for the two new and three previously

existing mobile reference systems (from Munich, Maisach,

and Minsk), and to travel with these systems to other EAR-

LINET stations for single-site intercomparisons afterwards.

Fortunate circumstances made it possible that not only the

reference lidars but eleven EARLINET systems from nine

stations participated already in the first campaign, the EAR-

LINET Lidar Intercomparison 2009 (EARLI09) in Leipzig,

Germany, in May 2009. Four more systems could be vali-

dated by comparison with one of the reference systems in a

second campaign, the Spanish Lidar Intercomparison 2010

(SPALI10), which took place at Madrid, Spain, in Octo-

ber and November 2010. Finally, single-site intercompar-

isons were realized at five EARLINET stations with six li-

dar systems between 2009 and 2013. The strategies devel-

oped and applied in these campaigns and their results are

discussed in the following. In Sect. 2 an overview of the cam-

paigns and a description of the involved systems is given. The

measurement and data-processing strategies are outlined in

Sect. 3. Results are discussed based on the comparisons at

signal and at product levels in Sect. 4. Further discussion of

the findings is provided in Sect. 5. Finally, Sect. 6 summa-
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rizes the conclusions and gives an outlook on future activi-

ties.

2 Instrument intercomparison campaigns

2.1 Overview

Figure 1 gives an overview on the stations involved in the

EARLINET intercomparison campaigns between 2009 and

2013. Mobile lidars from the EARLINET stations in Ham-

burg, Potenza, Munich, Maisach, Bucharest, Cabauw, Minsk,

Ispra, and Garmisch-Partenkirchen were moved to Leipzig

and intercompared during EARLI09 in May 2009, together

with a stationary and a mobile system of the Leipzig site. Af-

terwards, the reference lidar from Hamburg was brought to

the EARLINET station at Andenes, Norway, for a single-site

intercomparison in October/November 2009. The Munich

system traveled to Sofia to intercompare two lidars at this

site in October 2010. In October/November 2010, the refer-

ence lidar from Potenza participated in the SPALI10 cam-

paign in Madrid, where the intercomparison of the systems

from the stations in Évora, Barcelona, Granada, and Madrid

took place. The L’Aquila lidar was intercompared with the

Munich reference system in September 2012. Finally, in Oc-

tober 2013, the Potenza reference lidar was moved to Naples

and Lecce for single-site intercomparisons.

In the following, we introduce the individual campaigns

and the participating instruments in more detail. Table 1 lists

the involved lidar systems by name and institution. Their

measurement channels are detailed in Table 2. The lidar ID

used here includes the ID of the EARLINET station to which

the instrument belongs (two letters) and a number in order to

distinguish systems from stations with more than one instru-

ment.

2.2 EARLI09–EARLINET Lidar Intercomparison

2009

EARLI09 took place at the Leibniz Institute for Tropo-

spheric Research (TROPOS) in Leipzig, Germany, between

4 and 31 May 2009. As mentioned, this campaign was

planned to compare the reference lidar systems, but sev-

eral other partners took the opportunity to join, and fi-

nally 11 EARLINET lidar systems were collocated. In this

way, the campaign became the largest lidar intercomparison

performed so far, with challenging logistical requirements.

Three container-based systems, one van, two trailers, and

three stand-alone systems were placed next to the stationary

Leipzig EARLINET lidar, around and on top of the institute’s

building, and supplied with more than 120 kW of electrical

power and internet connection. The campaign also served

for the implementation and test of the new EARLINET in-

tercomparison strategy (see Sect. 3 for details). Thus, the

first week of the campaign was scheduled for preparations of

hardware and software. Between 11 and 28 May, 20 measure-

Figure 1. Map of EARLINET and stations involved in the inter-

comparison campaigns (station IDs: an – Andenes, at – Athens, ba –

Barcelona, be – Belsk, bu – Bucharest, ca – Cabauw, cl – Clermont-

Ferrand, co – Cork, ev – Évora, gp – Garmisch-Partenkirchen, gr

– Granada, hh – Hamburg, is – Ispra, ku – Kuopio, la – L’Aquila,

lc – Lecce, le – Leipzig, lm – Limassol, ma – Madrid, ms/mu –

Maisach/Munich, mi – Minsk, na – Naples, pa – Payerne, pl –

Palaiseau, po – Potenza, sf – Sofia, th – Thessaloniki). Red colors

show stations operating reference systems. Participation of instru-

ments from stations in EARLI09 (yellow), SPALI10 (green), and

single-site intercomparisons (blue) is indicated. Black dots repre-

sent stations which were not involved in the 2009–2013 intercom-

parisons.

ment sessions of 1–3 h duration on 11 days were performed.

Radiosondes were launched for each session. Daily briefings,

including an expert’s weather forecast, served for the plan-

ning of the sessions and for the discussion of results from

the previous day. The latter were obtained using a new data-

evaluation concept (see Sect. 3) that allowed us to handle, on

a daily basis, the signals from more than 100 lidar channels

provided by the 11 lidar systems which are described in the

following (see also Tables 1 and 2).

The Atmospheric Raman Lidar (ARL2-mobile, ID: hh01)

of the Max Planck Institute for Meteorology (MPI-MET) in

Hamburg is a multiwavelength Raman lidar. With 26 mea-

surement channels (see Table 2) it is the most extensive EAR-

LINET lidar. The emitter is a 440 mJ Nd:YAG laser (Quan-

tel, Brilliant B). The system has two unique features. Firstly,

it covers the altitude range from about 50 m above ground

up to the stratosphere by applying three separate receivers,

which are fiber-coupled to two Newtonian telescopes with

diameters of 380 (far range) and 150 mm (near range) and a

lens telescope with a diameter of 22 mm (lowest heights), re-
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Table 1. EARLINET systems participating in the intercomparison

campaigns

Lidar ID Lidar name and institution

EARLI09

hh01 ARL2-mobile, MPI-MET, Hamburg, Germany

ms01 MULIS, LMU Munich, Germany

mu01 POLIS, LMU Munich, Germany

po01 MUSA, CNR-IMAA, Potenza, Italy

mi01 LMR-mobile, BISIP, Minsk, Belarus

le01 MARTHA, TROPOS, Leipzig, Germany

le02 PollyXT, TROPOS, Leipzig, Germany

is01 CAML, JRC, Ispra, Italy

bu01 RALI, INOE 2000, Bucharest, Romania

gp01 HSRL, IMK-IFU, Garmisch-Partenkirchen, Germany

ca01 CAELI, KNMI, De Bilt, the Netherlands

SPALI10 (reference system: po01)

gr01 Raymetrics LR331–D400, CEAMA, Universidad de Granada, Spain

ev01 PAOLI, Universidade de Évora, Portugal

ma01 LIDAR-CIEMAT, CIEMAT, Madrid, Spain

ba02 UPC-MRL, UPC, Barcelona, Spain

ALI09 (reference system: hh01)

an01 Tropospheric Lidar, Alomar, Andøya Rocket Range, Norway

SOLI10 (reference system: mu01, upgraded)

sf01 Lidar with CuBr laser, IE-BAS, Sofia, Bulgaria

sf02 Lidar with Nd:YAG laser, IE-BAS, Sofia, Bulgaria

LALI12 (reference system: mu01, upgraded)

la01 UV lidar, Università degli Studi dell’Aquila, Italy

NALI13 (reference system: po01)

na01 MALIA, CNISM, Naples, Italy

LELI13 (reference system: po01)

lc01 UNILE lidar, Università del Salento, Lecce, Italy

spectively. Depolarization measurements at 532 nm are uti-

lized with two detection channels, which are directly cou-

pled to another 200 mm Newtonian telescope. The second

remarkable feature of the system is its capability to detect

rotational Raman signals at both 355 and 532 nm with a spe-

cific grating technique. In addition, the vibration-rotation sig-

nals at 387 nm (nitrogen) and 407 nm (water vapor) are mea-

sured. Rotational Raman signals serve for temperature mea-

surements, but can also be used for extinction-coefficient re-

trievals. Signals are detected by Hamamatsu photomultiplier

tubes (PMTs) in photon-counting detection mode in the UV

and visible wavelength ranges and by Licel/EG&G avalanche

photodiodes (APDs) in analog detection mode at 1064 nm.

The Meteorological Institute of the Ludwig-Maximilians-

Universität (LMU) in Munich participated with two instru-

ments, which both had already served as reference sys-

tems in EARLINET. POLIS (Portable Lidar System, ID:

mu01) is a small, rugged lidar system with an exchange-

able detector unit. It applies a 50 mJ laser (Big Sky, Ultra

GRM) and a 200 mm Dall-Kirkham Cassegrain telescope.

During EARLI09 the instrument was operated as a two-

channel 355 nm system, which detected either parallel- and

cross-polarized elastic backscatter signals or the total elastic

backscattering together with the 387 nm nitrogen Raman sig-

nal with Licel/Hamamatsu PMTs for combined analog and

photon-counting detection (Freudenthaler et al., 2009). PO-

LIS was upgraded to three channels in 2010 (see below) and

to six channels in 2013 (Freudenthaler et al., 2015). The sec-

ond system, MULIS (Multichannel Lidar System, ID: ms01),

is a 3+ 2 Raman lidar with polarization measurement capa-

bility at 532 nm (Freudenthaler et al., 2009). This lidar per-

forms the EARLINET observations at the station of Maisach,

near Munich. The instrument applies a 1.6 J Nd:YAG laser

(Continuum, Surelite II) and a 300 mm Cassegrain telescope.

Hamamatsu PMTs (UV and visible wavelength range) and a

Licel/EG&G APD (at 1064 nm) are used as detectors. All

elastic-backscatter signals are measured in analog detection

mode. For Raman signals, the combined analog and photon-

counting technique (Licel) is applied. MULIS was devel-

oped as a reference lidar for the first phase of EARLINET

(2000–2003) and served as a prototype for MUSA (Multi-

wavelength System for Aerosol, ID: po01), the reference sys-

tem of CNR–IMAA (Consiglio Nazionale delle Ricerche–

Istituto di Metodologie per l’Analisi Ambientale) in Potenza.

Thus, MUSA has very similar specifications as MULIS, with

the exception that it applies the Licel combined analog and

photon-counting detectors also for the elastic-backscatter

signals at 355 and 532 nm (Madonna et al., 2011).

The fifth EARLINET reference system is the LMR-

mobile (Lidar Multiwavelength Raman, ID: mi01) of the

B. I. Stepanov Institute of Physics (BISIP), Minsk, Belarus.

It is a compact, scanning, stand-alone system, which applies

a 250 mJ Nd:YAG laser (SOLAR TII, LF-114) and a 300 mm

Cassegrain telescope. The system has six measurement chan-

nels in 3+ 2 configuration with polarization discrimination

at 532 nm. Analog detection with PMTs (355, 532 nm) and

an APD (1064 nm) is applied for elastic-backscatter signals.

Photon-counting PMTs are used for Raman signals (387,

607 nm).

MARTHA (Multiwavelength Atmospheric Raman Lidar

for Temperature, Humidity, and Aerosol Profiling, ID: le01)

of TROPOS is the stationary EARLINET lidar at Leipzig,

Germany. It works with a 1.6 J Nd:YAG laser (Spectra

Physics, Quanta-Ray PRO 290) and an 800 mm Cassegrain

telescope. It allows 3+ 2 Raman lidar observations and de-

polarization measurements at 532 nm. In addition, the instru-

ment has channels for rotational Raman observations at 355

(since 2011, not during EARLI09) and 532 nm, water-vapor

measurements, and dual-field-of-view observations (Mattis

et al., 2004; Schmidt et al., 2013). PMTs in photon-counting

mode are employed in all channels, including at 1064 nm. For

routine, automatic observations, the PollyXT lidar (Portable

Aerosol Raman Lidar System, extended version, ID: le02) is

applied in Leipzig as well. It has a 3+ 2 Raman lidar setup,

utilizing a 450 mJ Nd:YAG laser (Continuum, Inlite III) and

a 300 mm Newton telescope (Althausen et al., 2009). Hama-

matsu photon-counting-only PMTs are deployed in all chan-

nels. Total and cross-polarized backscattered radiation was

detected at 355 nm during EARLI09 (at 532 nm since the end

of 2011).

CAML (Cloud and Aerosol Micro Lidar, ID: is01) of the

Joint Research Centre (JRC), Ispra, Italy, is a commercial

www.atmos-meas-tech.net/9/1001/2016/ Atmos. Meas. Tech., 9, 1001–1023, 2016
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Table 2. Overview of measurement channels of EARLINET systems participating in the intercomparison campaigns; lidar IDs are as in

Table 1. Numbers indicate detection wavelengths; t – total signal, c – cross-polarized signal, p – parallel-polarized signal, RR – rotational

Raman signal, RY – HSRL Rayleigh signal, far – far-range receiver, near – near-range receiver, low – low-range receiver, pol – receiver for

polarization measurements, a – analog detection, p – photon-counting detection, a+p – combined acquisition channels (Licel).

Lidar Rec. 355t 355c 355p 355RR 387 407 532t 532c 532p 532RY 532RR 607 1064

hh01 far p 2p p p p 2p a

near p 2p p p p 2p a

low p 2p p 2p

pol p p

ms01 a a+p a a a+p a

mu01 (a+p)a (a+p)a (a+p)a (a+p)a

po01 a+p a+p a+p a+p a+p a

mi01 a p a a p a

le01 p p p p p 2p p p

le02 p p p a, p p p

is01 p

bu01 a+p a+p p a+p a+p a+p a

gp01 a a a a

ca01 far a+p a+p p a+p a+p a

near a+p a+p p a+p a+p a

pol a+p a+p

gr01 a+p p p a+p a+p p a

ev01 p p p p p p

ma01 a a+p a a+p a

ba02 a+p a+p a+p a+p a+p a

an01 a+p a+p a+p a+p a+p a

sf01 pb

sf02 a a

la01 p
c

pc pc

na01 a, p p, p p a, p a, p p

lc01 a+p a+p a+p p a+p a+p a

a alternative configurations; see text for details
b CuBr laser, emission wavelength at 510 nm
c XeF excimer laser, emission wavelength at 351 nm, Raman-shifted wavelengths at 382 and 403 nm

micropulse lidar supplied by Cimel Electronique. The auto-

matic stand-alone system uses an 8 µJ, 4.7 kHz Nd:YAG laser

and a 200 mm telescope, and it measures 532 nm elastic-

backscatter light with a photon-counting APD (Barnaba

et al., 2010).

RALI (Raman Aerosol Lidar, ID: bu01) of the National

Institute of Research and Development of Optoelectronics,

INOE 2000, Bucharest, Romania, is a commercial 3+ 2 Ra-

man lidar from Raymetrics (LR331–D400), including polar-

ization discrimination at 532 nm and a water-vapor detec-

tion channel at 407 nm. It applies a 330 mJ laser (Big Sky,

CFR400-10) and a 400 mm Cassegrain telescope. The de-

tection channels are based on Licel/Hamamatsu PMTs for

the UV and visible channels and on a Licel/EG&G APD at

1064 nm (Nemuc et al., 2013; Belegante et al., 2014).

IMK-IFU (Institut für Meteorologie und Klimaforschung–

Atmosphärische Umweltforschung, Karlsruhe Institute of

Technology) participated in EARLI09 with a newly devel-

oped 532 nm High Spectral Resolution Lidar (HSRL, ID:

gp01). The 3+1 lidar (elastic-backscatter signals at 355,

532, 1064 nm and Rayleigh signal at 532 nm) applies a 0.5 J

Nd:YAG laser (Quanta Ray, LAB-150-30) and a 300 mm

Cassegrain telescope. The Rayleigh signal in the second

532 nm channel is separated with an iodine filter. Analog

signal detection with actively stabilized Hamamatsu 7400-03

PMTs and a pin photodiode at 1064 nm (both from Romanski

Sensors) is utilized.

CAELI, the CESAR (Cabauw Experimental Site for At-

mospheric Research) Water Vapor, Aerosol, and Cloud Lidar

(ID: ca01), was developed by the National Institute for Public

Health and the Environment (RIVM), Bilthoven, the Nether-

lands, and is now operated by the Royal Netherlands Mete-

orological Institute (KNMI), De Bilt, the Netherlands (Apit-

uley et al., 2009). CAELI works with a 1.6 J Nd:YAG laser
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(Continuum, PowerLite Precision II 9030 SI) and has two

3+ 2 setups with a water-vapor Raman channel, one coupled

to a 150 mm Newton telescope for near-range measurements

and one to a 570 mm Newton telescope for far-range observa-

tions. In addition, a 50 mm lens telescope is used to measure

parallel- and cross-polarized 532 nm signals. Licel data ac-

quisition technique with Hamamatsu PMTs for the UV and

visible wavelength range and EG&G APDs for 1064 nm is

applied in all channels.

2.3 SPALI10 – Spanish Lidar Intercomparison 2010

The second dedicated intercomparison campaign brought to-

gether the EARLINET systems of the Iberian peninsula from

the stations in Évora, Barcelona, Madrid, and Granada. Com-

parisons were made against the reference system MUSA

from CNR–IMAA in Potenza (ID: po01), which was suc-

cessfully tested in EARLI09 before. The campaign called

SPALI10 took place at the Centro de Investigaciones En-

ergéticas, Medioambientales y Tecnológicas (CIEMAT), De-

partment of Environment, Atmospheric Pollution Division,

in Madrid, Spain, between 18 October and 5 November 2010.

The campaign strategy followed the rules established in

EARLI09. The first week of the campaign was used for in-

strument setup and tests of the automated preprocessing of

data (see Sect. 3). During the following 2 weeks, measure-

ment sessions were regularly scheduled during day and night.

All in all, 29 sessions of 1–3 h duration were performed.

Radiosondes were launched systematically during the whole

field campaign for each measurement session.

All systems of the SPALI10 campaign are multiwave-

length Raman lidars (see Tables 1 and 2). The Granada group

operates a Raymetrics LR331–D400 system (ID: gr01) with

specification as described for the Bucharest system above

(Guerrero-Rascado et al., 2008, 2009). PAOLI (Portable

Aerosol and Cloud Lidar, ID: ev01) from Évora is a 3+ 2

system of PollyXT type (Althausen et al., 2009) with a 450 mJ

Nd:YAG laser (Continuum, Inlite III) and a 300 mm New-

ton telescope. Hamamatsu photon-counting-only PMTs are

applied in all channels. Cross-polarized backscattered radia-

tion, together with a total signal, is detected at 532 nm. The

LIDAR-CIEMAT system (ID: ma01) from Madrid and the

UPC MRL (Universitat Politècnica de Catalunya Multispec-

tral elastic-Raman Lidar, ID: ba02) from Barcelona are both

3+ 2 systems without polarization discrimination, but with

a water-vapor channel in the case of UPC MRL. LIDAR-

CIEMAT makes use of a 1 J Spectra Physics laser (LAB-170-

30) and a 300 mm Newtonian telescope. UPC MRL applies

a 365 mJ laser (Quantel, Brilliant) and a 355 mm Schmidt–

Cassegrain telescope (Kumar et al., 2011). The detection

channels of both systems are based on the Licel/Hamamatsu

PMT and Licel/EG&G APD acquisition systems.

2.4 Single-site intercomparison campaigns

Further intercomparisons were performed by moving one of

the reference systems to specific EARLINET sites. Actually,

this is the basic strategy applied for EARLINET intercom-

parisons at instrument level. It is planned to continue these

kinds of intercomparisons over the years in order to validate

each EARLINET system with a reference system from time

to time. Nevertheless, respective efforts are large and require

appropriate funding. Five activities were carried out between

2009 and 2013.

From 22 October to 5 November 2009 the reference sys-

tem ARL2-mobile of MPI Hamburg (ID: hh01) was stationed

at Andøya, Norway, in order to compare the Alomar Tropo-

spheric Lidar (ID: al01). During ALI09 (Alomar Lidar In-

tercomparison 2009) simultaneous measurements were per-

formed on nine days. On two days (4 and 5 November) ra-

diosondes were launched to support the signal calibration.

The Alomar Tropospheric Lidar is a 3+ 2 multiwavelength

Raman lidar with a 1 J laser (Spectra Physics, GCR-6-30)

and a 175 mm Newtonian telescope. The data acquisition is

based on the Licel/Hamamatsu PMT and Licel/EG&G APD

concepts. The optical receiver of the Alomar Tropospheric

Lidar had been changed considerably in the time before the

intercomparison, and the campaign was also used to fix re-

maining technical issues.

The lidar intercomparison SOLI10 (Sofia Lidar Intercom-

parison 2010) took place at the Institute of Electronics, Bul-

garian Academy of Sciences (IE-BAS), in Sofia, Bulgaria,

between 9 and 14 October 2010. POLIS from LMU Mu-

nich (ID: mu01) served as the reference system. POLIS had

been upgraded to three channels in summer 2010, including

355 nm with polarization discrimination and either 532 nm

total or 387 nm, and had been intercompared with the refer-

ence lidar system MULIS (ID: ms01) in Maisach again. PO-

LIS was transported to Sofia to intercompare both lidar sys-

tems of IE-BAS, one working with a 0.1 mJ CuBr vapor laser

at 510 nm, and the other with a 1 J Nd:YAG laser (EKSMA)

at 532 and 1064 nm (Stoyanov et al., 2011). Both systems are

elastic-backscatter lidars. The CuBr system (ID: sf01) uses a

150 mm Cassegrain telescope and a photon-counting PMT

as the detector. The Nd:YAG system (ID: sf02) applies a

350 mm Cassegrain telescope and analog detection. The lat-

ter system points out of a lab window under 58◦ zenith an-

gle. Thus, the intercomparisons were made separately for the

two systems, using the respective scan angle for the POLIS

measurements.

The L’Aquila Lidar Intercomparison 2012, LALI12, was

performed at the EARLINET site of the Dipartimento di

Fisica, Università degli Studi dell’Aquila, in L’Aquila, Italy,

between 10 and 15 September 2012. One daytime and three

nighttime sessions covering one 60 min and six 30 min inter-

comparison periods were carried out. Also here, POLIS (ID:

mu01) served as the reference system. The lidar at L’Aquila

(ID: la01) is a UV aerosol and water-vapor lidar, which ap-
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plies a XeF excimer laser (Lambda Physik, EMG 150 MSC),

a 200 mm telescope, and PMTs in photon-counting mode

(Rizi et al., 2004). The emission wavelength is only slightly

different from the third harmonic of a Nd:YAG laser, and

thus the wavelength shift of the received elastic-backscatter

(351 nm) and nitrogen Raman signals (382 nm) is neglected

in the comparisons.

The lidar system MALIA (Multiwavelength Aerosol Lidar

Apparatus, ID: na01) of the Consorzio Nazionale Interuni-

versitario per la Scienze Fisiche della Materia (CNISM) in

Naples, Italy, was intercompared with the Potenza reference

lidar MUSA (ID: po01) during the Naples Lidar Intercom-

parison 2013, NALI13, from 14 to 18 October 2013. Two

daytime and three nighttime measurement periods of 30 min

to 4 h were covered. MALIA is a 10-channel system based

on a 0.5 J Nd:YAG laser (Quantel, Brilliant-B) and a 0.3 m

Newtonian telescope. Signals at 355 nm (total) and 532 nm

(cross- and parallel-polarized) are detected with both photon-

counting and analog channels. The Raman return at 387 nm is

split to enter a high-signal and a low-signal photon-counting

channel. Further photon-counting channels detect the Ra-

man signals at 407 and 607 nm. Data acquisition is based on

150 MHz photon counters and 12 bit analog–digital convert-

ers.

From 21 to 25 October 2013, the Lecce Lidar Intercom-

parison LELI13 took place at the Università del Salento in

Lecce, Italy. Again, the MUSA lidar (ID: po01) served as the

reference system. Four daytime and five nighttime sessions

were performed. The EARLINET station of Lecce operates

a multiwavelength Raman lidar (UNILE lidar, ID: lc01) with

a 1.4 J Nd:YAG laser (Quantel, YG981E) and a 0.3 m New-

tonian telescope (Perrone et al., 2014). The 3+ 2 system has

polarization discrimination at 355 nm and a water-vapor Ra-

man channel at 407 nm. Licel data acquisition technique with

Hamamatsu PMTs for the UV and visible wavelength range

and an EG&G APD for 1064 nm is applied in all channels.

3 Measurement and data-processing strategies

The participation of a relatively large number of lidar sys-

tems in an intercomparison campaign, like EARLI09 and

SPALI10, requires the development and application of co-

ordinated observation and data-evaluation strategies. For in-

stance, it is necessary to have preliminary comparison re-

sults at hand as soon as possible after each measurement ses-

sion in order to detect and remove system faults immediately.

Particular attention must be paid in the beginning of a cam-

paign when systems had been moved before. Specific care is

also necessary when systems are brand new, as was the case

in EARLI09 for the new reference systems. In addition, in-

troducing differences in the comparisons by using different

analysis software should be avoided. These considerations

led to the development of a special version of the Single

Calculus Chain (SCC, D’Amico et al., 2015, 2016) before

EARLI09 in order to preprocess the raw lidar data in a com-

mon way instantaneously. An additional piece of software,

developed at LMU Munich, served for the direct comparison

at signal level, i.e., necessary interpolation, smoothing, and

weighting as well as visualization of signals and determina-

tion of signal deviations. Finally, a modified version of the

SCC optical products module (Mattis et al., 2016) was used

to calculate particle extinction and backscatter coefficients

from the processed signals in order to perform comparisons

at product level. The respective concepts are outlined in the

following.

In all intercomparison campaigns the lidar systems were

collocated on a flat terrain within about 100 m distance. The

laser beams pointed close to the zenith (except sf02; see

above), which made it very likely that all instruments mea-

sured the same atmospheric volume within the averaging

time. Several sessions were scheduled for every day of the

campaigns (weather permitting), one at daytime and one at

night if possible. Each session lasted several hours with the

goal to find at least a 30 min period in each session with sta-

ble atmospheric conditions and with all lidar systems up and

running. In order to be as flexible as possible in the selection

of final comparison periods, the raw signals were stored with

1 min resolution. The complete data sets of these raw signals

from all systems had to be delivered without any preprocess-

ing to a common database server shortly after each session.

The raw-signal formats had been predefined, following

standards set for the EARLINET SCC. Each data set includes

a header with all information necessary for further processing

of the signals. Some basic, fixed parameters of each system

had been collected in a system database. Using the header

and database information, all signals were then preprocessed

by the modified version of the SCC. The preprocessor per-

forms trigger-delay shift, dead-time correction, background

subtraction, and range correction. If requested, the preproces-

sor also combines near-range and far-range signals, photon-

counting and analog signals (gluing), and parallel- and cross-

polarized signals into a total profile using given calibration

ranges or values. After this individual signal preprocessing

and after selection of an appropriate comparison period, the

signals were averaged, typically over 30 to 120 min, in order

to improve the signal-to-noise ratio.

Figure 2 illustrates the processing steps at signal level for

the example of 387 nm signals measured with nine systems

in eleven channels during EARLI09 on 25 May 2009, 21:00–

23:00 UTC. The channels are distinguished by color, and the

legend provides the system ID (see Table 1) as well as a

three-digit channel ID with the following meaning:
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f__ – signal from far-range telescope

n__ – signal from near-range telescope

l__ – signal from low-range telescope

x__ – signal from a system with one telescope

_t_ – total signal

_p_ – parallel-polarized signal

_c_ – cross-polarized signal

_s_ – sum of parallel- and cross-polarized signals

__a – analog signal

__p – photon-counting signal

__g – analog and photon-counting glued signal (Licel).

In Fig. 2a, the individual signals are shown after prepro-

cessing with the SCC. Here, the averaged output signals pro-

vided by the SCC preprocessor still have the original range

resolutions from 3.75 to 60 m. In addition, a range offset

may occur because of different lidar location altitudes above

ground (e.g., when a lidar is operated in a building or on top

of a building and compared against a reference system in a

van or container at ground level). Furthermore, pointing an-

gles of the systems are typically between 0 and 5◦ and require

further altitude corrections. In order to allow for a point-by-

point comparison, the signals were re-binned to a common

height resolution of 60 m and to common height levels con-

sidering the individual system altitudes and the lidar zenith

angles. The signal noise at higher altitudes was reduced by

further stepwise progressive smoothing with up to 960 m res-

olution. The result is presented in Fig. 2b. In order to com-

pare the signals quantitatively, they were normalized in the

height range between 3.5 and 6.5 km, where the deviations

are small and the signal-to-noise ratios are high.

Usually, comparisons should be made against a reference

system for all individual wavelengths and polarization states.

However, in EARLI09, none of the reference systems were

considered to be proven already. Therefore, the chosen strat-

egy was to construct a mean signal, or common reference,

from the best parts of all available signals. Ideally, this com-

mon reference should be close to the unknown true signal.

For this purpose, range-dependent weights are assigned to

the individual signals by an expert’s guess reflecting an as-

sumed accuracy; see Fig. 2c. A weight of zero means that

the respective part of the signal, e.g., the range of incom-

plete overlap, is omitted. A weight of 1 is assigned to ranges

that appear trustworthy. Then, a weighted mean signal is

calculated as a first guess of the common reference. After-

wards, the expert’s weights are successively decreased by a

factor commensurate with the range-dependent signal devi-

ation from the first-guess mean signal; see Fig. 2d. In this

way, highest weights are assigned to the best signal parts, and

the final common reference is calculated. In the stratosphere,

where an aerosol-free range can be assumed, the mean sig-

nal is replaced by a calculated signal from actual radiosonde

data (pure molecular Rayleigh or Raman signal), fitted to

the common reference at an appropriate height (usually at

about 15 km). The radiosonde data were taken from local ra-

diosonde ascents during the experiment.

The approach of a common reference was applied in

EARLI09 only. In all other campaigns, the reference system

was considered as the standard to which the other systems

were compared. Point-by-point deviations as well as mean

deviations in certain height ranges are used to assess the qual-

ity of the signals.

If Pref(zi,λ) is the reference signal at wavelength λ (either

the common reference or the signal from the reference sys-

tem), the relative deviation of an individual signal P(zi,λ)

from this reference signal is calculated for each individual

height zi (to which the signals were commonly binned) as

1P(zi,λ)=
P(zi,λ)−Pref(zi,λ)

Pref(zi,λ)
. (1)

The relative deviations are shown in Fig. 2e for the example

case of 25 May 2009.

The mean relative systematic deviation (relative bias) of

an individual signal from the reference signal over a height

range 1z= zL− zK , i.e., L−K + 1 height bins, is defined

as

1P(1z,λ)=

L∑
i=K

1P(zi,λ)

L−K + 1
. (2)

The mean relative systematic deviation is used to assess the

quality of signals in certain atmospheric height ranges (e.g.,

boundary layer, free troposphere, stratosphere).

For the comparison at product level, aerosol optical param-

eters were computed using a special version of the SCC opti-

cal products module (Mattis et al., 2016). This version is able

to treat the preprocessed, re-binned, and normalized signals,

and also the common reference, on the common height grid

(with 60 m vertical resolution in EARLI09). Thus, point-by-

point comparisons and the calculation of mean deviations are

possible for the products in the same way as for the signals.

We use the absolute deviation,

1c(zi,λ)= c(zi,λ)− cref(zi,λ), (3)

of a coefficient c (either extinction or backscatter coefficient)

from the reference coefficient cref at individual heights and

the mean absolute systematic deviation (absolute bias) in cer-

tain height ranges,

1c(1z,λ)=

L∑
i=K

1c(zi,λ)

L−K + 1
, (4)

to investigate the quality of optical products.
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Figure 2. Illustration of signal processing for comparison purposes. The measurement was taken during EARLI09 on 25 May 2009, 21:00–

23:00 UTC. (a) Range-corrected signals at 387 nm with individual range resolutions (3.75 to 60 m). (b) Range-corrected lidar signals at

387 nm binned to common height resolution (60 m) and to common height levels, progressively smoothed (60 m up to 3 km, 120 m from

3–6 km, 240 m from 6–9 km, 480 m from 9–12 km, 960 m above), and normalized between 3.5 and 6.5 km. The thick gray line represents the

common reference. A pure molecular signal at 387 nm calculated from radiosonde data (rs09052503) is fitted to the common reference at

10.3 km (shown below 12 km) and, additionally, at 15.3 km (shown above 12 km). (c) Initial weights assigned to the signals for calculation

of a weighted mean signal. (d) Final weights assigned to the signals for calculation of the common reference. (e) Relative deviations of

individual signals from the common reference. For the sake of conspicuity the weights in panels (c) and (d) are successively shifted by a

value of 1 along the y axis.

4 Results

In the following, we present comparison results at signal and

product level. We focus on signals at the wavelengths of 355

(total), 387, 532 (total, parallel-, and cross-polarized), and

607 nm and respective aerosol products, i.e., particle extinc-

tion and backscatter coefficients at 355 and 532 nm. We do

not discuss observations at 1064 nm, since there is a sep-

arate paper on technical solutions, calibration issues, and

intercomparison results for the infrared wavelength in this

special issue by Engelmann et al. (2016). Furthermore, we

do not show results at product level for the particle depo-

larization ratio. Depolarization ratio measurements require

specific calibration procedures, which are discussed in de-
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tail in this special issue by Bravo-Aranda et al. (2016) and

Freudenthaler (2016). Rotational Raman lidar signals at 355

and 532 nm and the 532 nm HSRL Rayleigh signal are shown

in conjunction with the respective vibration-rotation Raman

signals at 387 and 607 nm, respectively, if available. We do

not compare signals at 407 nm (water-vapor Raman signals),

neither do we show water-vapor and temperature retrievals,

since these observations are currently not within the scope of

EARLINET.

Quantitative comparisons are presented for selected mea-

surement periods from each campaign. The periods were

chosen such that the instruments showed a satisfactory per-

formance; i.e., teething troubles as typical in the beginning

of a campaign had already been solved. Mainly nighttime

cases were considered, so that a complete evaluation of all

measurement channels and all delivered products was possi-

ble. Note that the focus of EARLINET is on the provision

of aerosol extinction and backscatter profiles independently

derived with high accuracy from Raman lidar measurements

during nighttime, since most of the Raman channels in the

network cannot be operated in the presence of strong day-

light. It was ensured that the atmospheric conditions had

been stable over the measurement period, which is most

likely the case during nighttime, and allow for unambigu-

ous comparisons. Therefore, the profiles were also checked

for the presence of a considerable amount of particles over

a large height range as well as clear-air signatures in the

far range representing Rayleigh conditions. Generally, cases

with optically thick clouds were excluded. Figures illustrat-

ing point-by-point comparisons are presented for EARLI09

only, whereas tables provide results of mean systematic devi-

ations in selected height ranges for all intercomparison cam-

paigns. Interested readers may find additional information on

different intercomparison campaigns in the ACTRIS QA re-

ports; see, e.g., Deliverables D2.5 and D2.11 of the ACTRIS

FP7 project provided at http://fp7.actris.eu/language/en-GB/

Members/Deliverables.aspx.

4.1 Comparisons at signal level

Figures 3 and 4 show comparison results for the EARLI09

session of 25 May 2009, 21:00–23:00 UTC. On that day, Sa-

haran dust layers were present up to about 6.5 km height

and provided a good opportunity for detailed comparisons

of aerosol products over a large height range. A cirrus cloud

layer occurred between 11 and 13.5 km height. The left pan-

els of Figs. 3 and 4 show the signals at 355, 387, and 607 nm

and the total, cross-polarized, and parallel-polarized 532 nm

signals, respectively. The right panels of both figures present

the relative signal deviations from the common reference.

The applied methodology follows the explanations in Sect. 3

exactly (see Fig. 2).

The different geometrical overlap functions of the vari-

ous systems and channels are clearly visible. Whereas near-

range channels based on a small telescope and a wide field

of view reach a complete overlap at a few hundred meters

above ground, channels based on a large-sized telescope and

a small field of view obtain full geometrical overlap between

1 and 3.5 km. The latter channels are usually well suited for

observations in the lower stratosphere up to 20–30 km height,

whereas the near-range channels are typically limited to mea-

surements in the troposphere, as can be seen in the figures

from the large fluctuations due to low signal-to-noise ratios

above the cirrus layer. In order to account for the different

observation ranges, for each channel a valid range is defined

within which the mean deviations from the reference are cal-

culated. The minimum valid range is the height below which

the signal has a systematic relative deviation of > 0.1 from

the reference profile, usually due to incomplete overlap. The

maximum valid range is the height above which the mean

relative deviation from the reference profile is > 0.1 over a

height interval of 2 km, usually when the detection limit is

reached. This upper boundary is determined by the instru-

ment parameters as well as by the actual atmospheric condi-

tions, in particular the optical depth. In the present case, the

attenuation of the signals by the cirrus cloud deck leads to

generally lower maximum valid ranges compared to obser-

vations under clear conditions.

Tables 3 and 4 show the valid range and the mean relative

signal deviation for different height ranges for the EARLI09

case of 25 May 2009 as well as for all other comparison cam-

paigns. The height ranges are defined from the lowest valid

range to 2.5 km (R1, typically covering the planetary bound-

ary layer), from 2.5 to 6 km (R2, representing the lower tro-

posphere), from 6 to 12 km (R3, representing the upper tro-

posphere), and from 12 km to the highest valid range (R4, in-

dicating the system performance in the lower stratosphere).

If the lower valid range is above 2.5 km and/or the upper

valid range is below 12 km, the averaging is applied accord-

ingly to the respective valid ranges, and the excluded ranges

(R1 . . . R4) are indicated as not valid (n.v.). As mentioned

above, the concept of a common reference was applied only

in EARLI09. For all other campaigns the deviations are cal-

culated with respect to the reference system or, for strato-

spheric heights and when the reference system was at the

detection limit, with respect to the Rayleigh profile derived

from radiosonde observations.

Regarding EARLI09 Figs. 3 and 4 and Tables 3 and 4

show a good agreement for almost all systems. Within the

valid range the mean systematic signal deviations are, with

few exceptions, well below ±5 % and typically in the range

of ± 2 %. Best agreement is found in the lower troposphere

(R2). In this range, the mean deviations are mostly below

1 %. Largest deviations are obtained in the lowest and highest

ranges, close to the boundaries which define the valid range,

and can thus be attributed to the effects of incomplete over-

lap or low signal-to-noise ratio. A clear bias due to obvious

system misalignment was found for the CAML micropulse

lidar from Ispra (is01, see Fig. 4 and Table 4). Since this

commercial system is sealed, no technical corrections by the

www.atmos-meas-tech.net/9/1001/2016/ Atmos. Meas. Tech., 9, 1001–1023, 2016
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Table 3. Valid range and mean systematic deviation of signals at 355, 387, and 607 nm in four height ranges: R1 (lowest valid range–2.5 km),

R2 (2.5–6 km), R3 (6–12 km), and R4 (12 km–highest valid range). n.v. denotes not valid. Rec. denotes receiver range.

Lidar Rec. Valid Mean systematic deviation, % Valid Mean systematic deviation, % Valid Mean systematic deviation, %

range, 355 nm (total) range, 387 nm range, 607 nm

km R1 R2 R3 R4 km R1 R2 R3 R4 km R1 R2 R3 R4

hh01 far 2.8–14.4 n.v. −1.2 −1.7 −8.5 2.5–14.4 n.v. −0.5 −3.8 −12.0 – – – – –

near 0.7–14.4 −1.9 +0.0 −0.5 +2.8 0.7–14.4 −1.7 +0.1 +1.3 −7.5 – – – – –

low 1.0–14.4 +3.0 +0.2 +0.1 +5.8 – – – – – – – – – –

ms01 0.3–12.5 −0.3 −0.9 +4.9 n.v. 0.3–18.0 +2.5 +0.4 −0.8 +2.0 0.3–18.0 +0.7 +0.2 −0.5 +1.1

mu01 0.2–16.0 +2.3 +0.4 +3.4 −0.6 0.2–16.0 +1.3 +0.3 −1.5 −3.6 – – – – –

po01 0.3–30.0 −1.7 −0.0 −0.2 −0.4 0.3–30.0 −0.4 +0.0 −0.3 −4.2 0.3–12.0 +4.4 +0.5 −1.5 n.v.

mi01 0.4–20.0 +0.8 +0.3 +0.5 +7.2 0.7–14.0 −3.5 +0.2 −3.5 −4.2 0.5–15.0 −2.8 −0.2 −0.6 +2.1

le01 1.3–30.0 +0.3 +0.4 −1.1 −0.1 1.3–30.0 −3.5 −0.2 −0.9 −1.9 1.5–30.0 −4.9 −0.6 +0.3 −1.6

le02 0.8–15.0 +1.2 +1.1 +0.4 +0.4 0.8–15.0 +1.8 +0.8 −1.2 −7.4 0.8–15.0 +2.1 +0.7 −1.6 −5.0

bu01 0.5–25.0 −1.1 −0.4 +0.8 −1.5 0.5–25.0 +0.0 +0.2 +1.4 −0.4 0.4–15.0 +9.1 +1.8 −1.3 −7.0

gp01 0.6–7.0 −6.1 −2.6 +9.2 n.v. – – – – – – – – – –

ca01 far 1.9–30.0 −5.7 −0.7 +2.1 −1.9 1.9–30.0 −5.3 −0.6 −0.6 −0.3 1.3–30.0 −3.5 −0.2 +1.2 −1.5

near 0.6–28.0 −1.5 −0.3 +1.1 −2.9 0.8–28.0 −6.4 −1.4 +3.2 +1.6 0.3–12.0 −1.4 −0.5 +2.9 n.v.

gr01 1.2–30.0 +3.3 −0.2 +0.1 +0.3 0.3–30.0 +2.6 −0.8 +0.9 +0.1 1.3–20.0 −7.3 −2.2 +0.3 +1.6

ev01 2.8–30.0 n.v. +3.8 +1.6 −0.7 2.1–30.0 +7.8 +3.5 −0.1 −1.2 1.0–30.0 −1.4 −2.3 +0.2 −0.7

ma01 0.7–12.0 +1.6 +2.2 −3.7 n.v. – n.v. n.v. n.v. n.v. – n.v. n.v. n.v. n.v.

ba02 0.5–30.0 +7.0 +3.0 +0.5 −0.3 0.9–30.0 −2.2 −2.1 −0.1 −0.7 0.8–30.0 −3.7 −3.4 −0.3 −1.9

an01 0.3–8.0 −1.4 −0.3 −4.0 n.v. 0.5–7.0 −1.7 −0.5 +0.2 n.v. – n.v. n.v. n.v. n.v.

la01∗ 0.3–13.0 +0.9 +0.2 −1.1 +2.7 0.3–13.0 +2.0 +0.0 −0.2 +2.0 – – – – –

na01 0.7–18.0 −0.4 −0.8 −1.0 −1.4 0.7–18.0 −1.7 −0.1 −1.6 −8.1 0.7–12.0 −3.0 −1.5 +8.6 n.v.

lc01 0.9–13.0 +0.2 +0.3 +0.7 −3.6 0.3–15.0 −1.4 −0.4 +0.6 −2.0 0.3–12.0 −3.4 −0.7 +5.2 n.v.

∗ XeF excimer laser; the wavelengths are 351 nm and 382 nm.

Table 4. Valid range and mean systematic deviation of signals at 532 nm (total), 532 nm (cross-polarized), and 532 nm (parallel-polarized)

in four height ranges: R1 (lowest valid range–2.5 km), R2 (2.5–6 km), R3 (6–12 km), and R4 (12 km–highest valid range). n.v. denotes not

valid. NA denotes not available. Rec. denotes receiver range.

Lidar Rec. Valid Mean systematic deviation, % Valid Mean systematic deviation, % Valid Mean systematic deviation, %

range, 532 nm (total) range, 532 nm (cross-polarized) range, 532 nm (parallel-polarized)

km R1 R2 R3 R4 km R1 R2 R3 R4 km R1 R2 R3 R4

hh01 far 2.0–12.5 −0.6 +2.6 −8.5 n.v. – – – – – – – – – –

near 1.6–14.4 +4.7 +0.7 +0.3 +1.1 – – – – – – – – – –

low 2.0–14.4 +8.9 +1.9 −1.7 +5.6 – – – – – – – – – –

pol – – – – – 0.5–14.4 +16.0 +10.0 −38.0 −140.0 0.5–14.4 +10.0 +1.7 −6.2 −40.0

ms01 0.3–13.5 +1.5 −0.0 −0.1 +2.6 0.3–18.0 +5.2 +6.2 −21.0 −30.0 0.3–14.0 +1.1 −0.7 −0.3 −3.5

po01 0.3–20.0 −1.2 −0.1 −0.2 +5.9 0.3–20.0 +3.8 +2.7 −4.3 −10.0 0.3–20.0 −1.6 −0.8 +0.4 +3.1

mi01 0.4–20.0 −2.0 −0.8 +0.4 −1.2 – – – – – 0.4–20.0 +0.3 +0.7 −0.7 +0.3

le01 1.2–28.0 +2.0 −0.3 +2.6 +5.4 1.3–30.0 −11.0 −6.5 +31.0 +2.0 – – – – –

le02 0.8–15.0 +0.5 −0.2 −0.6 −7.3 – – – – – – – – – –

is01 (1.5–12.0) +5.1 +3.6 −15.0 n.v. – – – – – – – – – –

bu01 0.4–25.0 +4.3 −0.3 +0.1 −3.6 0.4–30.0 +9.3 −6.1 +34.0 −1.9 0.4–20.0 +4.7 +0.5 −0.8 −5.6

gp01 2.5–12.0 n.v. +2.6 −0.1 n.v. – – – – – – – – – –

ca01 far 1.4–26.0 −3.9 −0.3 +0.4 −5.2 – – – – – – – – – –

near 0.2–25.0 −0.3 −0.1 +1.6 +0.8 – – – – – – – – – –

pol – – – – – 0.5–25.0 +3.8 −1.8 +16.0 −7.5 0.3–25.0 −5.8 −1.4 +1.7 +1.2

gr01 0.5–30.0 −4.3 −1.7 +1.0 −0.4 1.0–30.0 −3.4 +3.8 +0.1 −0.4 0.5–30.0 −2.6 −0.7 −0.2 −0.3

ev01 1.1–30.0 −1.2 +1.1 +1.5 −1.9 – NA NA NA NA – – – – –

ma01 0.3–25.0 −3.3 −0.3 +0.3 −2.9 – – – – – – – – – –

ba02 2.0–30.0 −8.3 −3.3 +1.6 −0.6 – – – – – – – – – –

an01 – – – – – 0.5–7.0 +0.9 −10.0 +3.7 n.v. 1.0–12.0 −5.7 −0.1 −8.4 n.v.

sf01∗ 1.3–10.0 +0.4 −5.0 −7.7 n.v. – – – – – – – – – –

sf02 0.2–12.0 +0.5 +0.3 +7.5 n.v. – – – – – – – – – –

na01 1.0–15.0 −0.3 −0.2 −2.0 −3.3 1.0–13.0 +2.6 −2.2 +0.9 +9.1 1.0–15.0 −0.8 −0.1 −1.9 +2.9

lc01 1.2–15.0 +3.9 +0.4 +0.2 +5.6 – – – – – – – – – –

∗ CuBr laser; the wavelength is 510 nm.
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Figure 3. Comparison of range-corrected signals at (a) 355 nm, (c) 387 nm, and (e) 607 nm and their deviations from the common reference

(b, d, f). The measurement was performed during EARLI09 on 25 May 2009, 21:00–23:00 UTC.
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Figure 4. Same as Fig. 3, but for (a, b) total, (c, d) cross-polarized, and (e, f) parallel-polarized signals at 532 nm.
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operators were possible, and the lidar could not be validated

during the campaign. The reason for the misalignment is a

temperature sensitivity of the telescope, which implies de-

focusing and thus different overlap functions with changing

temperature.

Other deviations seen in Figs. 3 and 4 are not consid-

ered as major quality deficits, since they are usually known

and considered in the data evaluation procedures. For in-

stance, the rotational Raman signals (curves with symbols)

deviate because they obtain a larger attenuation than the

vibration-rotation signals (due to the shorter wavelength of

the backscattered light) and have a temperature dependence.

The spread of the 532 nm cross-polarized signals in Fig. 4c

and d is caused by the different suppression of co-polarized

radiation due to different polarizers applied in the systems. In

this case, the common reference is probably not closest to the

truth. The effects are accounted for in the polarization cali-

bration (see Bravo-Aranda et al., 2016 and Belegante et al.,

2016). Regarding the somewhat larger deviations within the

cirrus cloud, we have to consider that inhomogeneities may

influence the signals due to the slightly different pointing of

the systems. Nevertheless, polarization-dependent transmis-

sion effects are also visible as in the case of the PollyXT sys-

tem from Leipzig (le02) at 355 nm (see Fig. 3a and b). Such

effects need to be quantified and corrected for as explained

by Mattis et al. (2009) and Freudenthaler (2016).

The results provided for SPALI10 in Tables 3 and 4

are taken from two observational periods on 25 Octo-

ber 2010, 22:15–23:59 UTC (systems ev01, ma01, ba02),

and 4 November 2010, 20:00–20:30 UTC (gr01), because an

alignment problem of the Granada system (gr01) could be

solved only late during the campaign. Nevertheless, the more

favorable conditions during the longer measurement period

on 25 October 2010 were chosen for the comparison of the

other systems. In general, the mean systematic deviations are

somewhat larger for SPALI10 than for EARLI09. The cam-

paign suffered from bad weather conditions and thus a lim-

ited number of suitable comparison periods. Misalignment

errors – which often occur in the beginning of the campaigns,

in particular when systems had been transported before –

could not be completely solved during SPALI10. In the case

of the PAOLI system from Évora (ev01; see Tables 3 and

4) the reason for the large deviations in the height ranges

R1 and R2, which are due to a very large range of incom-

plete overlap, could be identified only when the system was

back at Évora. It was found that the field stop was not ex-

actly positioned on the receiver optical axis, possibly because

of damage during transport. In addition, it was not possible

to obtain successful intercomparisons for all channels dur-

ing SPALI10. In particular, the signals of the CIEMAT lidar

from Madrid (ma01) showed electronic disturbances, vary-

ing from day to day, which prevented the Raman channels at

387 and 607 nm from being verified.

For comparing the Alomar Tropospheric Lidar (an01) with

the reference system (hh01) during ALI09, several mea-

surement periods on 4 November 2009, between 09:00 and

16:30 UTC, have been investigated. The optical receiver of

the Alomar system had been changed considerably before the

campaign. It turned out that the setup was not stable through-

out the ALI09 campaign. Readjustments were necessary for

each session, and it was not possible to obtain a good perfor-

mance of all channels at the same time. In addition, signal

offsets both in analog and photon-counting channels were

observed temporarily, which hint to external electronic dis-

turbances in the laboratory environment. From Tables 3 and

4 it can be seen that reasonable agreement with the reference

system could be achieved for the 355, 387, and 532 nm chan-

nels up to the mid-troposphere during selected time periods.

The 607 nm signal could not be validated. Consequences are

discussed in Sect. 5.

The systems at Sofia were compared during different ses-

sions of SOLI10. Because of the different pointing angles of

the lidars, the reference system (mu01) was operated under

a zenith angle of 0◦ on 10 October 2010, 17:34–17:56 UTC,

to compare the sf01 system, and under a zenith angle of 60◦

on 10 October 2010, 20:06–20:46 UTC, to compare the sf02

system. Good comparison results were achieved. A minor

height shift in the signal of the sf02-system was attributed

to a wrong trigger-delay correction. Deviations in the upper

troposphere for both systems are due to low signal-to-noise

ratios caused by the low system power in the case of sf01 and

the large zenith angle in the case of sf02.

The intercomparison period selected for the LALI12 cam-

paign is 15 September 2012, 22:31–23:39 UTC. Excellent

performance of the L’Aquila UV lidar (la01) was obtained.

Mean systematic deviations from the signals of the reference

system (mu01) were ≤ 2 % throughout the entire observa-

tional range (see Table 3).

For NALI13, the selected measurement period to calcu-

late the numbers presented in Tables 3 and 4 is 17–18 Oc-

tober 2013, 23:03–00:06 UTC. The MALIA system (na01)

compared very well to the reference system (po01), and no

significant deviations in any of the channels were obtained.

The Lecce system (lc01) was compared to the reference

system (po01) during LELI13 on 22 October 2013, 19:01–

20:01 UTC. In principle, also here the results were satisfac-

tory. Some smaller biases were identified in the near range

and attributed to geometrical effects due to focussing of the

signals onto the photocathodes. Further discussion of system

deficiencies found in all campaigns and proposed solutions

is provided in Sect. 5.

4.2 Comparisons at product level

Figures 5 and 6 show comparison results for particle ex-

tinction and backscatter coefficients at 355 and 532 nm,

respectively, for the EARLI09 session of 25 May 2009,

21:00–23:00 UTC, derived from the signals presented in

Figs. 3 and 4. Particle extinction coefficients were calcu-

lated after the Raman method (Ansmann et al., 1990) from

www.atmos-meas-tech.net/9/1001/2016/ Atmos. Meas. Tech., 9, 1001–1023, 2016
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Figure 5. Comparison of particle extinction coefficients (a) and particle backscatter coefficients derived using the Raman (c) and Fernald

methods (e), respectively, at 355 nm and their absolute deviations from the common reference (b, d, e). The measurement was performed

during EARLI09 on 25 May 2009, 21:00–23:00 UTC.
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Table 5. Valid range and mean systematic deviation of particle extinction coefficients at 355 and 532 nm in four height ranges: R1 (lowest

valid range–2.5 km), R2 (2.5–6 km), R3 (6–12 km), and R4 (12 km–highest valid range). n.v. denotes not valid. Rec. denotes receiver range.

Lidar Rec. Valid Mean systematic deviation, Valid Mean systematic deviation,

range, 10−3 km−1, 355 nm extinction range, 10−3 km−1, 532 nm extinction

km coefficient km coefficient

R1 R2 R3 R4 R1 R2 R3 R4

hh01 far 3.6–11.3 n.v. +2.6 +5.9 n.v. – n.v. n.v. n.v. n.v.

near 1.5–11.3 −7.1 −1.1 +1.4 n.v. 1.2–11.3 −6.5 +0.2 +2.9 n.v.

ms01 far 0.4–16.5 +9.5 +3.6 −0.6 +4.7 0.8–16.5 −7.6 +0.8 +0.1 +6.4

mu01 0.4–14.5 +0.6 +3.6 +3.0 −5.1 – – – – –

po01 0.8–17.5 +1.1 +1.8 −0.4 +3.5 0.8–11.3 +1.8 +6.7 +8.3 n.v.

mi01 1.2–10.0 −13.0 +3.5 +0.3 n.v. 1.0–11.3 −17.0 −4.3 +8.5 n.v.

le01 1.9–20.0 −13.0 −0.3 +0.4 +0.6 3.0–22.5 n.v. −4.8 +0.9 +2.3

le02 1.7–15.0 −1.9 +6.1 +0.8 +7.8 1.7–15.0 −1.4 +3.9 +2.1 +5.8

bu01 1.1–22.0 +4.7 +2.4 −2.1 +5.8 1.0–15.0 +14.0 +12.0 −2.6 −1.6

gp01 – – – – – 2.5–10.8 n.v. +2.0 −0.3 n.v.

ca01 far 2.9–22.0 n.v. −2.5 −1.8 +2.5 2.6–22.0 n.v. −2.8 −1.5 +0.8

near 1.2–22.0 −10.0 −9.6 −2.0 +3.9 0.6–11.3 −8.3 −4.5 −3.7 n.v.

gr01 1.0–14.0 +8.1 +1.1 +16.0 +24.0 1.5–10.0 +0.3 −6.2 −8.2 n.v.

ev01 2.3–15.0 +9.3 +6.6 +2.4 +1.9 1.5–8.0 +5.9 −3.0 +24.0 n.v.

ma01 – n.v. n.v. n.v. n.v. – n.v. n.v. n.v. n.v.

ba02 1.0–13.0 +3.2 +5.7 +0.3 +8.9 1.2–6.0 −14.0 −19.0 n.v. n.v.

la01∗ 0.5–13.0 +7.5 +2.1 +2.1 +5.6 – – – – –

na01 1.6–14.0 −4.3 +1.9 +0.8 +6.7 1.5–8.0 −6.4 +9.3 −0.1 n.v.

lc01 1.0–8.0 −3.8 −1.6 −1.2 n.v. 0.9–6.0 −11.0 −1.9 n.v. n.v.

∗ XeF excimer laser; the wavelength is 351 nm.

vibration-rotation Raman signals at 387 and 607 nm, respec-

tively, or from HSRL Rayleigh and rotational Raman sig-

nals if available. In the latter case, the two temperature-

dependent signals were added in order to get a profile that

is nearly temperature-independent. Particle backscatter co-

efficients were calculated using both the Raman (Ansmann

et al., 1992) and the Fernald methods (Fernald, 1984). The

reference height range is 7–10 km for the Raman solutions

and 9.4–10 km for the Fernald solutions. The profiles were

calibrated in these height ranges to mean values of 4× 10−5

and 2.5× 10−5 km−1 sr−1 at 355 and 532 nm, respectively.

A lidar ratio of 55 sr was chosen in the Fernald algorithm. A

gliding average with increasing window length over height

was applied in both extinction and backscatter retrievals. For

extinction, the window length increases from 180 m below

1 km height to 2.7 km in the stratosphere. For backscatter,

the resolution is 60 m up to 3.4 km and increases to 2.7 km

in the stratosphere. All retrievals and comparisons were done

without any correction of the individual overlap function.

Tables 5 and 6 show the valid range and the mean ab-

solute deviations from the reference of particle extinction

and backscatter coefficients, respectively, for the prede-

fined height ranges for all comparison campaigns. For the

backscatter coefficients, the Raman solutions are considered

whenever possible. Otherwise, the Fernald solutions are used

(italic numbers in the table). Profiles are considered to be

valid when they systematically deviate from the reference by

< 0.01 km−1 at the low end and by < 0.025 km−1 at the far

end of the profile in the case of extinction. For the backscat-

ter coefficients, the limit is set to 3× 10−4 km−1 sr−1 at both

ends. These values are of the order of the statistical mea-

surement errors (see fluctuation of the deviations in the right

panels of Figs. 5 and 6) and typically about 10–20 % of the

particle extinction and backscatter coefficients measured in

distinct aerosol layers (see left panels of Figs. 5 and 6). If

cirrus clouds were present, e.g., in the case of the EARLI09

example, these height ranges were excluded from the aver-

ages in Tables 5 and 6 because of the heterogeneity of the

products due to different measurement geometry. Because of

different pointing and various fields of view, not only differ-

ent volumes are detected, but also the influence of specular

reflection and multiple scattering on the products varies from

instrument to instrument.

Extinction retrievals (see Figs. 5a, b and 6a, b) clearly

show the influence of the different overlap functions. The

curves are cut at the lower valid range defined for Raman sig-

nals from which they were derived (see Table 3). The lower

valid range for the particle extinction coefficient is clearly
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Figure 6. Same as Fig. 5, but for 532 nm.
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Table 6. Valid range and mean systematic deviation of backscatter coefficients at 355 and 532 nm in four height ranges: R1 (lowest valid

range–2.5 km), R2 (2.5–6 km), R3 (6–12 km), and R4 (12 km–highest valid range). Italicized numbers indicate Fernald retrievals; all other

numbers belong to the Raman method. n.v. denotes not valid. Rec. denotes receiver range.

Lidar Rec. Valid Mean systematic deviation, Valid Mean systematic deviation,

range, 10−5 km−1sr−1, 355 nm backscatter range, 10−5 km−1sr−1, 532 nm backscatter

km coefficient km coefficient

R1 R2 R3 R4 R1 R2 R3 R4

hh01 far 3.5–13.4 n.v. −12.0 +0.1 +4.6 – – – – –

near 0.7–13.4 +0.1 +7.6 +1.7 +1.4 – – – – –

ms01 far 0.3–11.3 −85.0 −42.0 −0.1 n.v. 0.3–17.0 +9.3 +1.3 +0.7 −12.0

mu01 0.3–19.0 −3.0 −3.3 +0.7 +5.0 – – – – –

po01 0.3–30.0 −21.0 −1.8 +0.2 +6.6 0.3–30.0 −11.0 −1.6 +3.4 −14.0

mi01 0.8–10.0 +40.0 +3.7 +10.0 n.v. 0.5–11.0 −4.2 −6.5 +0.6 n.v.

le01 1.3–28.0 +18.0 +2.3 −0.1 +5.3 1.3–30.0 +15.0 −6.4 −0.8 +0.6

le02 0.8–17.0 −0.5 +2.4 +1.5 +9.7 0.8–15.0 −9.4 −6.4 −1.2 −1.5

is01 – – – – – (1.5–11.5) + 34.0 +33.0 +7.3 n.v.

bu01 0.5–30.0 −22.0 +1.6 −0.1 +2.5 0.5–15.0 −12.0 −6.7 +1.1 +4.9

gp01 0.6–2.5 −9.0 n.v. n.v. n.v. 2.5–11.3 n.v. −5.5 −0.4 n.v.

ca01 far 1.0–30.0 −14.0 −4.2 +0.6 −0.1 1.4–27.0 +3.8 +1.5 +0.4 −0.6

near 0.8–28.0 +64.0 +21.0 +1.4 +0.1 0.4–30.0 +13.0 +3.6 +0.7 −5.2

gr01 0.7–30.0 −2.6 −0.3 −6.3 −4.0 0.4–15.0 +4.7 +0.0 −1.8 −5.7

ev01 0.2–25.0 +13.0 +2.3 +0.0 +6.9 0.2–14.0 −2.2 +0.9 −4.0 +17.0

ma01 1.0–8.0 −0.5 +2.1 −13.0 n.v. 0.3–25.0 −3.0 −0.7 −0.2 −0.3

ba02 0.5–28.0 +0.1 +5.2 −0.6 +3.2 0.2–14.0 −2.2 +0.9 −2.7 +19.0

sf01a – – – – – 1.5–10.0 +14.0 +3.6 +1.0 n.v.

sf02 – – – – – 0.5–12.0 −0.7 +5.6 +2.2 n.v.

la01b 0.2–13.0 +8.5 +0.2 −6.3 −0.3 – – – – –

na01 0.9–18.0 +12.0 +2.8 +0.7 +6.7 0.7–12.0 +6.6 +1.5 −2.3 n.v.

lc01 0.8–13.0 +13.0 +5.2 +2.0 +8.2 1.0–12.0 +12.0 +0.1 −1.3 n.v.

a CuBr laser; the wavelength is 510 nm,
b XeF excimer laser; the wavelength is 351 nm.

higher and above 0.8 km for most systems, even when the re-

ceiver is optimized for the near range. When complete over-

lap is reached, the mean systematic deviations of the parti-

cle extinction coefficients are small and typically well be-

low ±0.01 km−1 throughout the troposphere. Signal noise

is the dominating source of uncertainty then, in particular

at 532 nm above 3–4 km height, where several curves show

large fluctuations (see Fig. 6a, e.g., mi01, bu01).

Backscatter coefficients can be derived closer towards

the ground than extinction coefficients. In the Raman re-

trieval the overlap effect cancels out when both the elastic-

backscatter signal and the Raman signal have the same geo-

metrical overlap function. However, since differences in op-

tical imaging and signal nonlinearities may occur in the near

range, this compensation does not work in all cases, as can

be seen from Figs. 5c, d and 6c, d. Another reason for the

spread of the curves towards the ground is the identical cal-

ibration in a common reference range. When the signals are

disturbed in this range, the calibration fails and the whole

profile is corrupted. For instance, the particle backscatter co-

efficient at 355 nm of the MULIS system (ms01) is shifted

towards values that are too low because of an analog signal

distortion (positive offset) in the calibration range (7–10 km).

The Fernald solutions for the particle backscatter coeffi-

cients at 355 and 532 nm are shown in Figs. 5e, f and 6e, f,

respectively. The curves are cut at the lower end accord-

ing to the valid range of the elastic-backscatter signals pro-

vided in Tables 3 and 4, i.e., when the relative signal devia-

tion from the reference becomes > 10 %. It can be seen that

close to this lower boundary, the particle backscatter coeffi-

cients are derived with an acceptable absolute deviation of

< 7× 10−4 and < 3× 10−4 km−1 sr−1 at 355 and 532 nm,

respectively. Analog signal distortions in the reference range

lead to offsets here as well (see, e.g., gp01 in Fig. 5e, f). In

Fig. 6e, f the result of the retrieval for the CAML lidar from

Ispra (is01) is also shown. The misalignment discussed above

leads to a bias of up to 5× 10−4 km−1 sr−1 in the free tropo-

sphere. Beside those few exceptions, for which the reasons

could be identified, the mean systematic deviation of the par-

ticle backscatter coefficients, from Raman as well as Fernald

www.atmos-meas-tech.net/9/1001/2016/ Atmos. Meas. Tech., 9, 1001–1023, 2016
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retrievals, is < 2× 10−4 km−1 sr−1 above the defined mini-

mum valid range (see Table 6).

5 Discussion

The EARLINET intercomparisons performed between 2009

and 2013 provided a broad insight into the level of quality

that has been reached in the network after nearly 15 years of

operation. The decision to perform comparisons not only at

product level as done before (Matthias et al., 2004) but also at

signal level, based on a common preprocessing, allowed for

a much deeper analysis of individual measurement channels

and potential system failures. For the majority of the detec-

tion channels, mean systematic deviations from the reference

over predefined height ranges were below ±1–2 % in the up-

per PBL and the free troposphere. Particle backscatter and

extinction coefficients could then be retrieved with an accu-

racy of better than ±2× 10−4 km−1 sr−1 and ±0.01 km−1,

respectively. These values are well below the quality mar-

gins of ±5× 10−4 km−1 sr−1 and ±0.05 km−1 defined by

Matthias et al. (2004) and of the order of 10 % of typical par-

ticle backscatter and extinction values observed in the PBL.

Some of the signals showed higher systematic biases,

which were further investigated. Typical reasons were mis-

alignment errors. Such errors were often observed in the be-

ginning of the campaigns, in particular when the systems

had been transported before. This finding depicts a short-

coming of centralized intercomparison campaigns for which

many systems have to be moved and operated outside of their

normal environments. Personnel that are used to working

with stationary systems under well-defined conditions usu-

ally need some time to gain experience with the challenges of

a field campaign. Such problems do not occur when on-site

comparisons with a well-characterized traveling standard are

performed instead. Some of the systematic biases obtained

could be attributed to signal distortions in analog detection

channels or problems with the gluing of analog and photon-

counting signals due to incorrect setting of acquisition pa-

rameters. These facts also call for expert site visits and indi-

vidual training in order to check systems in their laboratory

environment and advise personnel, in particular new network

members, in specific quality-checking procedures.

Further shortcomings observed during the intercompari-

son campaigns, which could not be solved on-site, led to con-

sequences regarding system upgrades or replacement. Af-

ter the failure of CAML (is01) in the EARLI09 campaign,

this system was removed from the network and the station

at Ispra was upgraded with a new 3+ 2 lidar system manu-

factured by Raymetrics (even if the performance of CAML

could be improved after EARLI09 by operating the lidar at

a controlled temperature of 35± 4 ◦C). The new lidar has

been in operation at Ispra since March 2013. Several sys-

tems with low performance in the PBL have been upgraded

with near-range receivers, among them the MARTHA sys-

tem from Leipzig (le01). Also, the newest generation of

PollyXT lidars (here represented by le02) is equipped with

additional channels that allow measurements down to about

50 m height (Engelmann et al., 2015). In the CIEMAT li-

dar system (ma01), which suffered from mechanical insta-

bility and electronic disturbances in the two Raman channels

during SPALI10, the respective PMTs (model Hamamatsu

R928) were replaced. The new data acquisition is based on

a Licel/Hamamatsu PMT R7400P-20 for the 607 nm channel

and a Licel/Hamamatsu PMT R9880 U-110 for the 387 nm

channel, and combined analog and photon-counting detec-

tion is applied. Moreover, mechanical modifications for a

better robustness of the system were implemented. After the

LELI13 campaign in Lecce, during which some biases in the

near range of the UNILE system (lc01) had been detected,

the receiver of the multiwavelength lidar at this station was

modified and the single focussing lens in front of each detec-

tor was replaced with a collimator in order to avoid geomet-

rical effects due to inhomogeneities of the detector surfaces.

Regarding the Alomar Tropospheric Lidar (an01), which

showed major deficiencies during ALI09, a number of mea-

sures, implemented after discussion with EARLINET ex-

perts, resulted in distinct improvements of the system. The

electrical noise, induced by the laser, could be reduced by

using a fiber coupling to achieve a galvanic separation of

the data acquisition electronics and the light source. The

cause for the poor quality of the 607 nm channel was iden-

tified as the combination of an interference filter that is too

broad and a photomultiplier with poor quantum efficiency at

this wavelength. During a system refurbishment, this chan-

nel has been removed, the main mirror was recoated, and

the crosstalk of the depolarization channels was minimized

with additional polarizing sheet filters. In addition, an auto-

mated polarization calibration unit was installed (Freuden-

thaler et al., 2009).

In general, dedicated intercomparison campaigns as dis-

cussed in this paper require large efforts and can thus only

be performed sporadically. Nevertheless, because of the lack

of external calibration standards for aerosol lidar observa-

tions, any instrument intercomparison is of great value for

quality assurance. Therefore, following the principle of best

scientific practice, every opportunity of cross-checking the

quality of measurements by a direct comparison of results

from collocated observations should be used. Within EAR-

LINET and in collaboration between EARLINET and other

research projects, direct instrument intercomparisons are per-

formed whenever possible. Regular intercomparisons take

place at sites where more than one system is available, e.g.,

because the groups own one of the reference systems in addi-

tion to their stationary lidar (Potenza, Minsk, Hamburg, Mu-

nich/Maisach) or apply other lidars in experiments outside

of EARLINET (Leipzig, Naples). Other opportunities are re-

lated to dedicated field campaigns in which several lidars of-

ten participate. In this context, comparisons with downlook-

Atmos. Meas. Tech., 9, 1001–1023, 2016 www.atmos-meas-tech.net/9/1001/2016/



U. Wandinger et al.: EARLINET intercomparison campaigns 1021

ing airborne lidars may also be used to check the system per-

formance in the near range.

6 Conclusions and outlook

In this paper, we have presented results of the EARLINET

instrument intercomparison campaigns between 2009 and

2013. During this period, about two-thirds of the EAR-

LINET systems performed comparison measurements with

one or more reference systems. In two dedicated cam-

paigns, EARLI09 and SPALI10, 15 instruments underwent

this quality-assurance procedure. EARLI09 also served to

qualify the reference systems that are used as traveling stan-

dards within the network. With these reference instruments,

six other systems were checked during direct station vis-

its. Altogether, more than 100 individual measurement chan-

nels were examined, based on a common strategy of signal

preprocessing and evaluation following the principles of the

EARLINET Single Calculus Chain. In most cases, a very

good agreement of signals as well as derived aerosol prod-

ucts with the defined reference could be obtained. The inter-

comparisons have reinforced confidence in the EARLINET

data quality and allowed us to draw conclusions on necessary

system improvements for some instruments and to identify

major challenges that need to be tackled in the future.

EARLINET is a living network that is continuously in

development, both regarding the instrument level and the

network distribution. Most of the stations regularly upgrade

their systems by adding new measurement capabilities based

on recent experience, technological developments, and avail-

able funding. Thus, a complete assessment of all systems at

any time in any specific setup through intercomparison with a

reference system is not possible. Therefore, complementary

quality-assurance concepts need to be applied. EARLINET

requires regular internal system check-ups in addition to the

sporadic intercomparisons. Specific internal check-up tools,

such as the telecover test for the near range and the Rayleigh

fit for the far range, have been developed and must be ap-

plied at least once per year as well as after each major system

upgrade. These activities are discussed in detail by Freuden-

thaler et al. (2016).

Within the ACTRIS-2 project, which started in May 2015,

the quality-assurance efforts of EARLINET will be fur-

ther improved. In order to provide a long-term, sustain-

able infrastructure that can serve the lidar community even

beyond EARLINET, the Lidar Calibration Centre, LiCal,

will be established. LiCal is a common effort of the EAR-

LINET groups at INOE (Bucharest, Romania), CNR-IMAA

(Potenza, Italy), and LMU (Munich, Germany). It will pro-

vide lidar calibration services from the characterization and

optimization of single components to the assessment of com-

plete systems through intercomparison with reference sys-

tems. The POLIS (mu01) and MUSA (po01) reference li-

dars will be further upgraded and used exclusively for this

purpose in the future. LiCal will also host a lidar training

laboratory in order to educate station personnel in apply-

ing lidar check-up tools and maintaining lidar calibration. In

this way, the long-term quality-assurance strategy of EAR-

LINET, which has been successfully established over the past

15 years, will be further consolidated.
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