995 research outputs found

    Determining the number of hidden units in multi-layer perceptrons using F-ratios

    Get PDF
    The hidden units in multi-layer perceptrons are believed to act as feature extractors. In other words, the outputs of the hidden units represent the features in a more traditional statistical classification paradigm. This viewpoint offers a statistical, objective approach to determining the optimal number of hidden units required. This approach is based on an F-ratio test, and proceeds in an iterative fashion. The method and its application to simulated time-series data are presented

    An architecture for object-oriented intelligent control of power systems in space

    Get PDF
    A control system for autonomous distribution and control of electrical power during space missions is being developed. This system should free the astronauts from localizing faults and reconfiguring loads if problems with the power distribution and generation components occur. The control system uses an object-oriented simulation model of the power system and first principle knowledge to detect, identify, and isolate faults. Each power system component is represented as a separate object with knowledge of its normal behavior. The reasoning process takes place at three different levels of abstraction: the Physical Component Model (PCM) level, the Electrical Equivalent Model (EEM) level, and the Functional System Model (FSM) level, with the PCM the lowest level of abstraction and the FSM the highest. At the EEM level the power system components are reasoned about as their electrical equivalents, e.g, a resistive load is thought of as a resistor. However, at the PCM level detailed knowledge about the component's specific characteristics is taken into account. The FSM level models the system at the subsystem level, a level appropriate for reconfiguration and scheduling. The control system operates in two modes, a reactive and a proactive mode, simultaneously. In the reactive mode the control system receives measurement data from the power system and compares these values with values determined through simulation to detect the existence of a fault. The nature of the fault is then identified through a model-based reasoning process using mainly the EEM. Compound component models are constructed at the EEM level and used in the fault identification process. In the proactive mode the reasoning takes place at the PCM level. Individual components determine their future health status using a physical model and measured historical data. In case changes in the health status seem imminent the component warns the control system about its impending failure. The fault isolation process uses the FSM level for its reasoning base

    Long-Term Use of Aldosterone-Receptor Antagonists in Uncontrolled Hypertension: A Retrospective Analysis

    Get PDF
    Background. The long-term efficacy of aldosterone-receptor antagonists (ARAs) as add-on treatment in uncontrolled hypertension has not yet been reported. Methods. Data from 123 patients (21 with primary aldosteronism, 102 with essential hypertension) with difficult-to-treat hypertension who received an ARA between May 2005 and September 2009 were analyzed retrospectively for their blood pressure (BP) and biochemical response at first followup after start with ARA and the last follow-up available. Results. Systolic BP decreased by 22 ± 20 and diastolic BP by 9.4 ± 12 mmHg after a median treatment duration of 25 months. In patients that received treatment >5 years, SBP was 33 ± 20 and DBP was 16 ± 13 mmHg lower than at baseline. Multivariate analysis revealed that baseline BP and follow-up duration were positively correlated with BP response. Conclusion. Add-on ARA treatment in difficult-to-treat hypertension results in a profound and sustained BP reduction

    Thermodynamics and heavy quark potential in N_f=2 dynamical QCD

    Get PDF
    We study N_f=2 lattice QCD with nonperturbatively improved Wilson fermions at finite temperature on 16^3 \cdot 8 lattices. We determine the transition temperature at m_{\pi}/m_{\rho} \sim 0.8 and lattice spacing as small as 0.12fm. The string breaking at T < T_c is also studied. We find that the static potential can be fitted by a simple expression involving string model potential at finite temperature.Comment: 6 pages, 6 figures, contribution to Lattice 2002(topology

    Transient behavior in Single-File Systems

    Get PDF
    We have used Monte-Carlo methods and analytical techniques to investigate the influence of the characteristics, such as pipe length, diffusion, adsorption, desorption and reaction rates on the transient properties of Single-File Systems. The transient or the relaxation regime is the period in which the system is evolving to equilibrium. We have studied the system when all the sites are reactive and when only some of them are reactive. Comparisons between Mean-Field predictions, Cluster Approximation predictions, and Monte Carlo simulations for the relaxation time of the system are shown. We outline the cases where Mean-Field analysis gives good results compared to Dynamic Monte-Carlo results. For some specific cases we can analytically derive the relaxation time. Occupancy profiles for different distribution of the sites both for Mean-Field and simulations are compared. Different results for slow and fast reaction systems and different distribution of reactive sites are discussed.Comment: 18 pages, 19 figure

    Progression of osteoporosis in patients with COPD: A 3-year follow up study

    Get PDF
    SummaryCurrently, our knowledge on the progression of osteoporosis and its determinants is limited in patients with chronic obstructive pulmonary disease (COPD). Bone mineral density generally remains stable in patients with COPD over a period of 3 years. Nevertheless, the progression of vertebral fractures was not assessed, while an increase of vertebral fractures over time may be reasonable.Aims of the current study were to determine the percentage of newly diagnosed osteoporotic patients after a follow up of 3 years and to identify baseline risk factors for the progression of osteoporosis in COPD.Clinically stable COPD outpatients were included. Lung function parameters, body composition measures, six minute walk distance, DXA-scan and X-spine were assessed at baseline and repeated after 3 years.Prevalence of osteoporosis in COPD patients increased from 47% to 61% in 3 years mostly due to an increase of vertebral fractures. Lower baseline T-score at the trochanter independently increased the risk for the development of osteoporosis. Additionally, baseline vitamin D deficiency increased this risk 7.5-fold.In conclusion, the prevalence of osteoporosis increased over a 3-year period in patients with COPD. Baseline risk factors for the development of osteoporosis are osteopenia at the trochanter and vitamin D deficiency

    Evidence for the free radical/oxidative stress theory of ageing from the CHANCES consortium : a meta-analysis of individual participant data

    Get PDF
    BACKGROUND: The free radical/oxidative stress theory of ageing has received considerable attention, but the evidence on the association of oxidative stress markers with mortality is sparse. METHODS: We measured derivatives of reactive oxygen metabolite (D-ROM) levels as a proxy for the reactive oxygen species concentration and total thiol levels (TTL) as a proxy for the redox control status in 10,622 men and women (age range, 45–85 years), from population-based cohorts from Germany, Poland, Czech Republic, and Lithuania, of whom 1,702 died during follow-up. RESULTS: Both oxidative stress markers were significantly associated with all-cause mortality independently from established risk factors (including inflammation) and from each other in all cohorts. Regarding cause-specific mortality, compared to low D-ROM levels (≤340 Carr U), very high D-ROM levels (>500 Carr U) were strongly associated with both cardiovascular (relative risk (RR), 5.09; 95 % CI, 2.67–9.69) and cancer mortality (RR, 4.34; 95 % CI, 2.31–8.16). TTL was only associated with CVD mortality (RR, 1.30; 95 % CI, 1.15–1.48, for one-standard-deviation-decrease). The strength of the association of TTL with CVD mortality increased with age of the participants (RR for one-standard-deviation-decrease in those aged 70–85 years was 1.65; 95 % CI, 1.22–2.24). CONCLUSIONS: In these four population-based cohort studies from Central and Eastern Europe, the oxidative stress serum markers D-ROM and TTL were independently and strongly associated with all-cause and CVD mortality. In addition, D-ROM levels were also strongly associated with cancer mortality. This study provides epidemiological evidence supporting the free radical/oxidative stress theory of ageing and suggests that d-ROMs and TTL are useful oxidative stress markers associated with premature mortality. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12916-015-0537-7) contains supplementary material, which is available to authorized users

    Comparison of nuisance parameters in pediatric versus adult randomized trials: a meta-epidemiologic empirical evaluation

    Full text link
    BACKGROUND We wished to compare the nuisance parameters of pediatric vs. adult randomized-trials (RCTs) and determine if the latter can be used in sample size computations of the former. METHODS In this meta-epidemiologic empirical evaluation we examined meta-analyses from the Cochrane Database of Systematic-Reviews, with at least one pediatric-RCT and at least one adult-RCT. Within each meta-analysis of binary efficacy-outcomes, we calculated the pooled-control-group event-rate (CER) across separately all pediatric and adult-trials, using random-effect models and subsequently calculated the control-group event-rate risk-ratio (CER-RR) of the pooled-pediatric-CERs vs. adult-CERs. Within each meta-analysis with continuous outcomes we calculated the pooled-control-group effect standard deviation (CE-SD) across separately all pediatric and adult-trials and subsequently calculated the CE-SD-ratio of the pooled-pediatric-CE-SDs vs. adult-CE-SDs. We then calculated across all meta-analyses the pooled-CER-RRs and pooled-CE-SD-ratios (primary endpoints) and the pooled-magnitude of effect-sizes of CER-RRs and CE-SD-ratios using REMs. A ratio < 1 indicates that pediatric trials have smaller nuisance parameters than adult trials. RESULTS We analyzed 208 meta-analyses (135 for binary-outcomes, 73 for continuous-outcomes). For binary outcomes, pediatric-RCTs had on average 10% smaller CERs than adult-RCTs (summary-CE-RR: 0.90; 95% CI: 0.83, 0.98). For mortality outcomes the summary-CE-RR was 0.48 (95% CIs: 0.31, 0.74). For continuous outcomes, pediatric-RCTs had on average 26% smaller CE-SDs than adult-RCTs (summary-CE-SD-ratio: 0.74). CONCLUSIONS Clinically relevant differences in nuisance parameters between pediatric and adult trials were detected. These differences have implications for design of future studies. Extrapolation of nuisance parameters for sample-sizes calculations from adult-trials to pediatric-trials should be cautiously done

    Modular and predictable assembly of porous organic molecular crystals

    No full text
    Nanoporous molecular frameworks are important in applications such as separation, storage and catalysis. Empirical rules exist for their assembly but it is still challenging to place and segregate functionality in three-dimensional porous solids in a predictable way. Indeed, recent studies of mixed crystalline frameworks suggest a preference for the statistical distribution of functionalities throughout the pores rather than, for example, the functional group localization found in the reactive sites of enzymes. This is a potential limitation for 'one-pot' chemical syntheses of porous frameworks from simple starting materials. An alternative strategy is to prepare porous solids from synthetically preorganized molecular pores. In principle, functional organic pore modules could be covalently prefabricated and then assembled to produce materials with specific properties. However, this vision of mix-and-match assembly is far from being realized, not least because of the challenge in reliably predicting three-dimensional structures for molecular crystals, which lack the strong directional bonding found in networks. Here we show that highly porous crystalline solids can be produced by mixing different organic cage modules that self-assemble by means of chiral recognition. The structures of the resulting materials can be predicted computationally, allowing in silico materials design strategies. The constituent pore modules are synthesized in high yields on gram scales in a one-step reaction. Assembly of the porous co-crystals is as simple as combining the modules in solution and removing the solvent. In some cases, the chiral recognition between modules can be exploited to produce porous organic nanoparticles. We show that the method is valid for four different cage modules and can in principle be generalized in a computationally predictable manner based on a lock-and-key assembly between modules
    corecore