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A control system for autonomous distribution and control of electrical power during space

missions is being developed. This system should free the astronauts from localizing faults

and reconfiguring loads if problems with the power distribution and generation components

occur.

The control system uses an object-oriented simulation model of the power system and first-

principle knowledge to detect, identify, and isolate faults. Each power system component

is represented as a separate object with knowledge of its normal behavior. The reasoning

process takes place at three different levels of abstraction: the Physical Component Model

(PCM) level, the Electrical Equivalent Model (EEM) level, and the Functional System Model

(FSM) level, with the PCM the lowest level of abstraction and the FSM the highest. At the

EEM level the power system components are reasoned about as their electrical equivalents,

e.g, a resistive load is thought of as a resistor. However, at the PCM level detailed knowledge

about the component's specific characteristics is taken into account. The FSM level models

the system at the subsystem level, a level appropriate for reconfiguration and scheduling.

The control system operates in two modes, a reactive and a proactive mode, simultaneously.

In the reactive mode the control system receives :measurement data from the power system

and compares these values with values determined through simulation to detect the existence

of a fault. The nature of the fault is then identified through a model-based reasoning process

using mainly the EEM. Compound component models are constructed at the EEM level and

used in the fault identification process. In the proactive mode the reasoning takes place at

the PCM level. Individual components determine their future health status using a physical

model and measured historical data. In case changes in the health status seem imminent the

component warns the control system about its impending failure. The fault isolation process

uses the FSM level for its reasoning base.

1 Introduction

Failure to provide a reliable, uninterrupted sup-

ply of electrical power under all circumstances

may doom space missions. In case of impend-

ing or actual failures, decisions will have to be

made about rescheduling load demand and/or

reconfiguring the power generation and distri-

bution system. These decisions will have to be

made fast, often without the help of experienced

control room operators, and often relying on in-

Complete information.

Knowledge-based (or intelligent) control sys-

tems have the ability to make decisions, and

the capability to learn, and therefore seem ide-

ally suited for the operation of complex systems

such as electric power plants and distribution

systems. However, practical applications of in-
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telligent controllers are rare, and appear to be

based on control strategies that use prewired

solutions to a collection of potential problems,

and/or use a supervisory planning approach to

failure recovery. As a consequence, these sys-

tems have no way to deal with unanticipated,

or multiple simultaneously occurring faults, and

they have little or no capability to adapt to

changing environments or to learn from past ex-

periences.

We are working on overcoming these afore-

mentioned limitations by developing an intelli-

gent control system that uses quantitative and

qualitative system models based on an object-

oriented representation of the components of

the physical system to be controlled. The

object-oriented representation decentralizes in-

telligence by equipping each component with

knowledge about how to detect its impending

failure, and how to act in case of failure. This

reduces the time required to detect faults when

compare d to an approach relying on a single

central fault detector. Furthermore, the object-

oriented representation can be implemented in

a parallel computer, leading to even shorter re-

sponse times. The intelligent controller will use

these models to explore the "optimal" control

actions to modify the system performance or

operation. Also, by equipping the model com-

ponents with knowledge about their behavior

(e.g., a resistor will "know" how its temperature

will rise in response to the voltage and current

applied to it), and with memory (e.g., a record

of its temperature for the last hour or so), proac-

tire autonomous control can be achieved, even

with incomplete sensor data.

Expert systems have been applied to the

power engineering area before (see [10] for a

review), but few such system are beyond the

demonstration phase, and all were developed for

large-scale, interconnected systems. The most

promising approaches involve the use of object-

oriented techniques because an object-oriented

approach models the causal and functional re-

lationships by inheritance and message passing

mechanisms, and the part-of or component hi-

erarchy [7]. Furthermore, objects are complete

functional units that lend themselves to paral-

lel implementations more easily than rule-based

approaches, which is important for real-time ap-

plications.

A fairly small number of applications of

object-oriented programming techniques for the

intelligent control of power systems have been

published [1, 2, 6, 9], with the prototypical sys-

tem for event diagnosis and operation planning

described in [3] being most closely related to

our own work. However, it is unclear how much

this system relies on reasoning from first prin-

ciples (if it uses that concept at all), nor does it

seem to have progressed bcyond its first proto-

type state. Notwithstanding this criticism, [3]

clearly shows that object-oriented, model-based

methods are indeed advantageous for problems

in control. The theory of model-based reason-
ing is explained by Kuipers [5]. Model-based

systems are especially useful in the diagnosis of

multiple faults as shown in [4]. Also, it is argued

in [4] that diagnosing faults at multiple levels

of abstraction, starting with the most abstract

level ' and examining the less :abstract levels

only when there is reason to suspect it, makes

the generation of candidate solutions more effi-

cient.

2 Architecture of the pow-

er system simulator and

controller.

Our work is based on a multi-level model of

the system, with intelligence built in at each

level in the sense that each component can rea-

son about its real-world state, as opposed to

a higher level intelligence that reasons about
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Figure 1: Overview of the architecture o/the model-based, object-oriented control system.

all the "dumb" lower level objects. Also, the

object-oriented design we follow is intended

to support concurrency with only a minimal

amount of knowledge being exchanged.

2.1 General System Descrip-
tion.

A diagram of the control system is presented

in Figure 1. At its core is a model of the sys-

tem to be controlled. This model represents the

physical system under normal operating condi-

tions, and is referred to as the Ha simulator.

At least three versions of H0 exist, represent-

ing the physical system at various level of ab-

straction. First, there is the Physical Compo-

nents Model (PCM), containing physically re-

alistic models of the components of the sys-

tem to be controlled. At the next level of ab-

straction, one finds the Electrical Equivalent

Model (EEM). The latter is a representation of

the physical system in terms of power sources,

impedances, and switches. The Functional Sub-

systems Model (FSM) is the most abstract of

all, and represents the system in the form of

a reduced network in which sub-nets are rep-

resented by single functional blocks. An ex-

ample of the PCM, EEM, and FSM of a sim-

ple physical system, consisting of a generator,

switches, resistive loads (a light bulb and an

electric heater) is shown in Figure 2. The elec-

tric heater consists of a fan, i.e., a motor (M1)

and a resistive heating element (L2); and the

light bulb is denoted by L3.

Each of the three models is an object-oriented

representation of the actual system. That is,

components are represented as data structures

referred to as objects. The latter consist of at-

tributes relating to properties of the component
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Figure 2: An example of a Physical Component Model (right), its Electrical Equivalent Model

(middle), and its Functional Subsystems Model (left).

being represented, and attribute-values specify-

ing the values of these properties and/or proce-

dures that can be used to compute these values.

The topological relationships between com-

ponents in the PCM, EEM, and FSM are spec-

ified by attributes describing the connections

between the present component and others in

the network. Expected voltages at nodes and

currents through branches in the EEM are com-

puted using the VIsolver. The VIsolver is an

object that solves for the currents and volt-

ages of the power system using the modified

nodal formulation [8]. The solution is based on

Kirchhoff's current and voltage laws in a ma-

trix form with special considerations taken to

reduce the size of the matrices but at the same

time keeping it general. This method can be

used on networks containing voltage and cur-

rent sources, impedances, conductances, ideal

two-ports, and switches. Historical data, in-

tended for use in the proactive mode, for each

component is stored in history attributes. Sen-

sors placed at strategic positions in the phys-

ical system (in our case, the physical system

is a software simulation as well) provide mea-

surements of voltages and currents in the power

system. The PCM and the EEM work in tan-

dem, using the knowledge embedded in them, to

detect potential faults. Once faults have been

detected (see Section 2.2 below for an explana-

tion of thefault detecti()n process), additional
versions of the PCM, EEM and F_dM are au-

tomatically generated, representing models of

the physical system modified in such a way as

to account for the hypothesized cause of the

fault. For example, H1 and/-/2 may be gener-

ated in case two explanations for the fault are

possible. Competing hypotheses are eliminated

on the basis of comparing future sensor data

with predicted values, and/or heuristic reason-

ing. Once the fault has been determined (iden-

tified) remedial action is taken to return the

system to a non-faulty state through reconfigu-

ration of loads and sources.

2.2 Fault Detection

Faults may be present if discrepancies between

sensor values and expected values are found in

the EEM, or if a component in the PCM antici-

pates impending failure (on the basis of knowl-

edge about the behavior of its physical equiva-
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lent, and the historical data available). In other

words, the system works in both a reactive and

a proactive mode simultaneously.

As an example of reactive operation, consider

the system shown in Figure 2. Assume that

voltages and current measurements are avail-

able at the output of the generator (V1), the

input to the heater (R1 and R2), and the input

of the light bulb (R3). Assume that the mea-

sured voltage and current at the heater sud-

denly drops. The voltage at the light bulb

will also change slightly, and the current at the

source will decrease. Therefore there is a dis-

crepancy between measured sensor values and

simulated sensor values and a fault is detected.

It is not obvious from the measurements which

component is faulty. However, by reasoning us-

ing knowledge of the fault models for each com-

ponent and their health status it is possible to

narrow down the number of possibilities and,

eventually, the fault can be identified and iso-

lated through simulation (see Section 2.3 for de-

tails).

An example of proactive fault detection is the

following: Assume that M1 in the PCM finds

that its real-world counterpart is about to over-

heat due to a continuous overload beyond its

rating. The M1 object then immediately sig-

nals its impending fault state to its equivalent

counterpart (R1) in the EEM and tells R1 that

the current needs to be reduced. The control

system formulates strategies to reduce the cur-

rent through R1, using the knowledge encapsu-

lated in it (in this case the only possibility is

switching off the motor). It is clear that hy-

pothesis selection needs to be based taking into

account the importance of the various subsys-

tems in accomplishing the mission objectives.

The components in the FSM have knowledge

about these aspects, and this knowledge is used

to determine which of the reconfigured systems

best meets future objectives, and the H/, that

accomplishes this, becomes the new H0 after

the appropriate commands have been issued to

the power system.

2.3 Fault Identification

Once the existence of a fault has been detected

the location of the fault must be determined. A

small change in a single component value can

cause many sensors to indicate the existence

of a fault. To determine which component has

caused the fault (in the reactive mode), branch

currents and node voltages are computed us-

ing the measured data, and each component's

impedance value is computed based on the cur-

rent running through it and the voltage across

it. The EEM component compares its calcu-

lated impedance with its "known" impedance

and if there is a difference, then the compo-

nent is suspected of having caused the fault.

All components have a health status attribute

which is determined by the PCM and veri-

fied by the EEM. The PCM determines the

health status using heuristics, historical data,

and physical knowledge of the component. Hy-

potheses regarding possible faults are gener-

ated, based on the component's health status

and impedance discrepancy using the compo-

nent's fault-model, supplied by the PCM.

The aforementioned approach will work if

the environment is sensor-rich, i.e., there are

enough sensors in the network to calculate the

impedance of all components. However, if the

environment is sensor-sparse, i.e., there are rel-

atively few sensors in the network, then a strat-

egy will be followed that converts the sensor-

sparse environment into a virtual sensor-rich

environment. This approach is based on the

concept of compound component models. The

latter are formed by combining components

connected in series, parallel, or in a bridge con-

figuration to a single compound component.

Compound components can be part of other

compound components. The location of the
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availablevolt-metersand current-metersguides
the formation of compound models so that in
the (reduced) environment the impedance of
eachcompound componentcanbe determined.
In other words, the reducednetwork becomes
virtually sensor-richwith respect to the com-
poundcomponents.The impedanceand health
status of the compound componentsis calcu-
lated basedon the impedance,the health sta-
tus, and the interconnection of the individual
componentsthat makeup the compoundcom-
ponent. The fault identification processcan
then function in a similar fashion in both a
sensor-richand a sensor-sparseenvironment.
Of course,fault localization can then only pin-
point a compound componentas the sourceof
the trouble. However,using the fault models,
heuristics,andhistorical data about the compo-
nentsmakingup the compoundcomponentcan
beusedin a reasoningprocessto moreprecisely
identify the fault location.

To illustrate the reasoningprocess,consider
the casewhere a fault has beenlocalized to a
compoundcomponentconsistingof two parallel
resistiveloads. Supposethat oneof the loadsis
a motor, and the other a heater. Faults occur-
ring in thesecomponentswill reflect themselves
aschangesin the component'simpedance(e.g.,
a short will causea virtually zero impedance).
Further, assumethat only the voltageacrossthe
loadsand the total current, but not the currents
through eachload, are known. In sucha case,
it will be impossible to determine which load
is faulty basedon the availablemeasurements
alone. However,usingfault-modelssuppliedby
the PCM, coupled with the assumption that a
single fault is considerablymore likely to oc-
cur than a multiple fault, oneor morehypothe-
sescan be generated. For example, the PCM
"knows" that a heater's most common failure
modeis breakageof the heaterelement,causing
the impedanceto go to infinity. Thereforethe

the EEM of the motor unchanged. In a simi-
lar manner/-/2would replacethe motor EEM by
an impedancereflecting its most prevalentfault
state, i.e, ashort in the motor coil. The voltages
and currents predicted by eachof the compet-
ing componentsare comparedto the measured
data, which will lead eventually to the elimi-
nation of all but one hypothesis. This process
can be refined by utilizing the concept of the
component's "health status". The latter can
be usedto determine the order in which com-
ponentsshould be hypothesizedas faulty. For
example,the fact that a componenthasbeenin
servicefor closeto its expectedlife span,gives
it a poor health status and thus it will be hy-
pothesizedasfaulty prior to componentswith a
good health status. The systemwill keeptrack
of which componentsfail, and under what cir-
cumstances.This "failure log" is fundamental
to the learningcapabilitiesof the system,which
will cometo "recognize"previouslyencountered
failure modes.

3 Design and implementa-

tion of the power system

simulator and controller.

We are currently in the process of implement-

ing the previously outlined architecture. The

NeXT computer has been chosen as the im-

plementation platform. The NeXT supports

Objective-C and has extensive graphical inter-

face capabilities.

The power system simulator has been de-

signed and implemented. A graphics-based tool

has been developed to interactively configure

the power system to be simulated. A panel

with icons, representing components typically

encountered in a power system, is presented,
H1 hypothesis would replace the EEM of the .... and the user can "click-and-drag" these icons in

heater by an infinite impedance, while leaving the desired position in the power system win-
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dow. The specifications for each component
areenteredby changingthe attribute values,in
an inspector window, for the component. The
resulting power system can simulate voltage
sources,switches, and resistive loads. We are
only consideringdirect currents at the present,
but a generalization to alternating currents is
kept in mind.

A schematicdiagram of the power systemis
shownon the screenin a powersystemsimula-
tor window with the componentvaluesand cur-
rents and voltagesdisplayednext to eachcom-
ponent. The power system'svoltagesand cur-
rents arecalculatedby the simulator's VIsolver.
The VIsolver is an object that solvesfor branch
currents and nodevoltagesfor anyelectric net-
work including power systemsusing the nodal
admittance matrix. The solution is basedon
Kirchhoff's current and voltage laws in a ma-
trix form with special considerationstaken to
reducethe sizeof the matricesbut at the same
time keepingit general.

Changesin switch settings, load resistance,
and sourcevoltages can be made through an
event queueor by clicking on the component
in the schematicdrawing of the powersystem.
The eventqueueiseditable and is usedto insert
faults into the power system. The power sys-
tem's voltages and currents are automatically
recalculatedwhen the power system simulator
receivesan eventor a switchposition ischanged
by clicking on the switch with the mouse.The
eventsare sent to the power system one after
the other in order of occurrencein time.

A control system that reads data from the
powersystemsimulator hasbeenimplemented.
It is possibleto set which voltagesand currents
the control systemcan receivefrom the power
system by inserting volt-meters and current-
metersat the desiredpositions in the network.
The data is displayedin a separatecontrol sys-
tem window containing the same diagram as
shownin the power system simulator window.

The control systemis capable of issuing com-
mands regarding switch settings to the power
system.The control systemis capableof form-
ing compound modelsof componentsin series,
parallel, and bridge configurations.

4 Future developments.

At present, a component library is being built

for commonly used electric power components,

including DC-motors, generators, circuit break-

ers. These components, with their embedded

knowledge, form an important part of the fault

detection system.

The current speeds of execution of the system

suggest that parallel implementation is necessi-
tated in order to achieve real-time implemen-

tation. Though we lack the hardware for such

an implementation, a successful attempt has al-

ready been made at executing the various tasks

in the program concurrently on the same pro-

cessor using separate threads. We expect to im-

plement the final system with a fair amount of

distributed processing over a network of NeXT

computers, so that each task will have its own

processor, with the goal of achieving significant

speed-ups.
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