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We have used Monte Carlo methods and analytical techniques to investigate the influence of the character-
istics, such as pipe length, diffusion, adsorption, desorption, and reaction rates on the transient properties of
single-file systemsThe transient or the relaxation regime is the period in which the system is evolving to
equilibrium. We have studied the system when all the sites are reactive and also when only some of them are
reactive. Comparisons between mean-field predictions, cluster approximation predictions, and Monte Carlo
simulations for the relaxation time of the system are shown. We outline the cases where the mean-field analysis
gives good results compared to dynamic Monte Carlo results. For some specific cases we can analytically
derive the relaxation time. Occupancy profiles for different distributions of the sites both for the mean field and
simulations are compared. Different results for slow and fast reaction systems and different distributions of
reactive sites are discussed.

DOI: 10.1103/PhysReVvE.66.066705 PACS nunier02.70.Uu, 02.60-x, 05.50+¢, 07.05.Tp

I. INTRODUCTION dimensional systems called single-file Systems where par-
ticles are not able to pass each other. In R&7] we have
Although systems in nature evolve by obeying physicalfocused on the steady-state properties of a SFS with conver-
laws, it is in most cases difficult or not feasible to describesion. The process of diffusion in SFS has different character-
the system properties accurately since details of the micrdstics as ordinary diffusion, which affects the nature of both
scopic dynamics are not fully known. Therefore we usuallytransport and conversion by chemical reactions. We are in-
deal with simplified models for these systems, of which stovestigating the kinetic properties of this system, and, more
chastic models are an example. They are thus described bypaecisely, we are interested in the properties of the system
reduced set of dynamic variables. Although many exact sobefore reaching equilibriunithe transient or relaxation re-
lutions have been founid —6], the vast majority of stochas- gime).
tic models cannot be solved exactly. Many results for equi- Different methods and techniques have been described in
librium systems[7-11] have been classified. In nature, the literature to solve the ME exactf$,12,19. In spite of
however, equilibrium is rather an exception than a rule. Inthe remarkable progress in the field of exactly solvable non-
most cases the temporal evolution starts from an initial statequilibrium processes, the majority of reaction-diffusion
that is far away from equilibrium. The relaxation of such amodels cannot be solved exacfl}9,20. It is therefore nec-
system towards its stationary state depends on the specifigsary to use approximation techniques in order to describe
dynamical properties and cannot be described within theheir essential propertig®.g., mean-fieldMF) approxima-
framework of equilibrium statistical mechanics. Instead, it istion, cluster approximatign21]. Also, as was already real-
necessary to set up a model for the microscopic dynamics afed by Smoluchowski22], fluctuations and correlations
the system. Assuming certain transition probabilities, themay be extremely important in low-dimensional systems
time-dependent probability distributid®(s) to find the sys-  where the diffusive mixing is not strong. Therefore, these
tem in configurations has to be derived from the master approximation techniques can give results that deviate
equation(ME). Solving the ME is usually a difficult task. strongly from the system behavior. Dynamic Monte Carlo
Therefore, the theoretical understanding of nonequilibrium(DMC) methods are used to simulate the system according to
processes is still at its beginning. Better understanding ofhe ME.
these phenomena would be an important step as nonequilib- Few researchers have concentrated on the properties of
rium systems exhibit a richer behavior than equilibrium sys-the system in the transient regime and only studied the reac-
tems[12-18. tivity of the system in this regime. Moreover, little research
We investigate nonequilibrium processes fosiagle-file  has been done for an open system where adsorfdiesorp-
system(SFS with conversion. In Ref[17] we have already tion) is present at the marginal sites. The reason that many of
elaborated on the special properties of porous structures suche analytical approaches fail is because of the asymmetry of
as zeolites. The one-dimensional nature of the zeolite chanhe system.
nel leads to extraordinary effects on the kinetic properties of In the present work we focus on the nonequilibrium phase
these materials. These structures are modeled by ongroperties of SFS with conversion. We study the relaxation
time of the systenitime evolution of the system properties,
starting with no particlesfor different sets of kinetic param-
*Electronic address: silvia@win.tue.nl eters, lengths of the pipe, and distributions of the reactive
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FIG. 1. Picture of a single-file system with two types of adsorbed particles.

sites. In the transient regime we observe that the MF resultsorrelations in the system, we introduce another approxima-
are close to the DMC results both for slow and fast reactiortion called the cluster approximation. We have also simulated
systems. We outline the cases for which the differences arthe system governed by the ME using DMC simulations.
significant. We compare with the steady-state situation in
which the MF was not describing the single-file effects prop-
erly [17]. We analyze the situations when analytical results
can be derived, and we compare these results with the MF We model a single-file system by a one-dimensional array
and DMC results. We look at the relaxation of the total load-Of sites, each possibly occupied by an adsorkste Fig. 1
ing, loading with different components, occupancies of indi-This is the model of diffusion and reaction in a one-
vidual sites for various parameters, and different distribu-dimensional arrangement of particles with hard-core interac-
tions of the reactive sites. As MF is a coarse approximationtion. The sites are numbered 1,2.,S. A particle can only
for the analysis of profile occupancies we introduce a bettefove to the right or to the left if an adjacent site is vacant.
approximation(cluster approximation We analyze the re- The sites could be reactive and unreactive and we note with
sults using different analytic methods such as pair and MPNpro the number of reactive sites. A reactive site is the only
approximation. Pair approximation and MF approximationplace where a conversion may take place.
tend to give similar results due to the high-order correlations We consider two types of adsorbatés,and B, in our
in the system. We investigate the effect of various modemodel and we denote with' the site occupation of a site,
assumptions made about diffusion, adsorption, desorption = (*,A,B), which stands for a vacant site, a site occupied
and reaction on the kinetic behavior of the system. by A, or a site occupied by &, respectively. We restrict

In Sec. Il we specify our mathematical model togetherourselves to the following monomolecular and bimolecular
with the theoretical background for analytical and simulationtransitions.
results. In Sec. Il A we present the various results for tran-
sient regimes for the simplified model without conversion. 1. Adsorption and desorption

We solve numerically and analytically the master equation in - Adsorption and desorption take place only at the two mar-
order to get the relaxation time of the system. In Sec. Il Bginal sites, i.e., the left and rightmost sites at the ends of the
we use the MF theory to simplify the rate equati¢fg] of  system:
the system for the case when all the sites have the same
activity towards conversion. We present the results obtained A(
. . . . - gas +* = An,
using DMC simulations for the case with conversion when
all the sites are reactive in Sec. Ill C 1, and when only some

A. The model

of the sites are reactive in Sec. lll C 2. For all these cases we An—A(gag +*y,
compare the DMC results with the MF and pair approxima-

tion results. The influence of the position of the reactive sites B,—B(gag +*,,
is also outlined. The last section summarizes our main con-

clusions.

where subscripin denotes a marginal site. Note that there is
no B adsorptionB’s can only be formed by conversion.
Il. THEORY

. . . . 2. Diffusi
In this section we give the theoretical background for our fffusion

analytical and simulation results. First we specify our model In the pipe, particles are allowed to diffuse via hopping to
and then we show that the defined system obeys a ME. Wgacant nearest neighbor sites:

derive then a set of exact rate equations from the master

equation of the system describing the reaction kinetics. We Ant* geox AL,

look at the properties of the system in the transient regime by
solving these rate equations. In order to do this we have to
use approximation techniques. We use the MF analysis and
derive a set of equations that we can solve numerically. Be-
cause MF is a strong simplification and neglects all spatiavhere the subscripts are site indicas:1,2, ... S—1.

Bt *nr1o*n+Bni1,
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3. Conversion C. Analytical methods
An A can transform into 8 at a reactive site: 1. Rate equations

Starting from the master equati@@) and using expres-
A—B,. sion (4) the rate equations of the system are derijig. We
denote byW, 45, Wyess Wairr» W,y the rate constants of ad-
In the initial state of the system all the sites are va¢aat ~ sorption, desorption, diffusion, and conversion, respectively.
particles in the pipeas we are interested in the behavior of For simplicity we assume that the rate constant# @ind B
the system towards equilibrium. desorption are equal, and also the rate constanfsafd B
diffusion are equal. We denote BY,) the probability that a
particle of typeY is on siten, and with(Y,Y . 1) the prob-
ability that a particle of typeY is at siten and one at site
Reaction kinetics is described by a stochastic process. Ew1, where Y=(*,A,B). The coefficientsA,, where n
ery reaction has a microscopic rate constant associated with1,2, . ..,S are 1 if siten is reactive and 0 otherwise. The
it that is the probability per unit time that the reaction occurs.rate equations for a nonmarginal site are
Stochastic models of physical systems can be described by a
master equatiof23]. )\ T — (A
By «, 8, we will indicate a particular configuration of the — dt aifl = {An*n+1)
system, i.e., a particular way to distribute adsorbates over all

B. Master equation

the sites.P_(t) will indicate the probability of finding the —(An*n-1) T (An— 1% 0) F(An* n 1) 1= A Wi Ay).
system in configuratiom at timet andW,, is the rate con- (5)
stant of the reaction changing configuratigrto configura-

tion a. For(B,) we get similarly

The probability of the system being in configuratiarat
time t+dt can be expressed as the sum of two terms. The d(Bn) = Wil = (By* 1) — (*n1Bn) + (B 1% )
first term is the probability to find the system already in de nontl n-i=n n-ion
configurationa at timet multiplied by the probability to stay
in this configuration duringlt. The second term is the prob-
ability to find the system in some other configuratiGnat
time t multiplied by the probability to go fronB to « during

+<*an+1>]+AnWrx<An>- (6)

The marginal sites also have adsorption and desorption. They
can be dealt with similary as the conversion. The rate equa-

dt: tions for A are
P (t+dt)=[1—dtD W, |P,(t)+dt>, W, zP4t). d(A;)
( : ( % g ) ® EB sPell) at =W —(Ar*2) + (*1A2) ]+ Wagd* 1) — Wged A1)

oY)
- Alwrx<Al>v
By taking the limitdt— 0 this equation reduces to a mas-

ter equation: (A
q “ar - Waitl = (*s-1A9) +(As-1* 9]+ Waa* g)

dP,(t)
dt

=2 [W,osP (1) = Wg,P(1)]. ) —WaeAs) — AsWix(As), (7)
B
and the rate equations f& are

Analytical results can be derived as follows. The value of (By)
a propertyX is a weighted average over the valugswhich !
is the value ofX in configuratione, dt

=Wiitt[ = (B1*2) + (*1B2) | = Wged B1) + AW (Ay),

HBY _ gal (1B + (B 1]~ Weed By)
<X>:2 PaXa. (3) dt - diff S—-1PS§ S—-1"S de 1

+AgWi(Ag). (8)
From this follows the rate equation: Note that these coupled sets of differential equations are
exact, but not closed.

d{X) dpP,
T:E dt XaZEB [Waﬁpﬁ_wﬁapa]xa 2. Mean field
To solve this coupled set of differential equations, we
=S W PAX —X.). 4 need to make an approximation for the two-site probabilities
aE,B asPp(Xa=Xg) @ such agAp* ., 1), (Bo*ns1), etc. The closure relation

066705-3
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D. Dynamic Monte Carlo

<X>=2 (XY) 9)

We have seen that we can derive approximate analytical
solutions to the master equation. DMC methods allow us to
should hold for any approximation for these two-site prob-simulate the system governed by the master equation over
abilities. We denote wittX the occupation of site and with ~ time. We simplify the notation of the master equation by
Y the occupation of site+ 1. The simplest approximation is defining a matriXW containing the rate constaritg,;, and

a diagonal matriR by R,z;=2 W, ;, if =g, and 0 oth-
(XY)=(X)(Y), (100 erwise. If we put the probabilities of the configuratidhgin
a vectorP, we can write the master equation as
i.e., neighboring sites are considered independent.

The two-site probabilities then beconid,* 1) =(A,) d_P_ —(R—W)P 14
X(*n11), (Bo*ns1)=(Bu){*n-1) [21]. This approximation ar - (RTWPR 19
is called the mean-field approximation and gives us a
coupled set of differential equations that we can solve nuwhereR andW are time independent. We also introduce a
merically. new matrixQ, Q(t)=exp(—Rt). This matrix is time depen-

dent by definition and we can rewrite the master equation in
3. Cluster approximation the integral form

The MF approximation is a strong simplification because t
it neglects all spatial correlations in the system. Because the P(t)=Q(t)P(0)+J dt’'Q(t—t" )WP(t"). (15
system we analyze is onedimensional, the correlations might 0
be significant and important. The obvious possibility to
eliminate the weakness of the MF approach is to introduc
another approximation.

Instead of using the MF approximation for the two-site P(t)=
probabilities, we write down their rate equatiofsee the
Appendi¥. These equations have three-site probabilities,
which we approximate. This leads to a so-called cluster ap- —t")WQ(t' —t")WQ((t")+---
proximation. The closure relation

gy substitution, we get from the right-hand side f(t’),

t t ’
Q(t)+foolt'Q(t—t')VVQ(t')+foolt'JOt dr'Q(t

P(0). (16)

Suppose at=0 the system is in configuration with
(XY)= > (XY 2 (1)  probabilityP,(0). Theprobability that, at time, the system
‘ is still in configuration « is given by Q,.(t)P.,(0)
L .. =exp(—R,.)P,(0). This shows that the first term represents
should now ho.ld for any app_roxmatlon. We de;note he_re Wlththe contribution to the probabilities when no reaction takes
X the occupanon of sita, W.'th Y th? occupation of site place up to timd. The matrixW determines how the prob-
+1, and withZ the occupation of site+2. abilities change when a reaction takes place. The second

There are various decogplm_g schemes u_sed in the_ _“ter%rm represents the contribution to the probabilities when no
ture[2,4,6,18,24 as approximations for the-site probabili- reaction takes place between times 0 ahdsome reaction

ties. For many of these decoupling schemes the closure rel?ékes place at tim¢’, and then no reaction takes place be-

tlpn (11) no longer hold_s. Fpr simplicity we will use the tweent’ andt. The subsequent terms represent contributions
simplest cluster approximation, called pair apprommaﬂonwhen two, three, four, etc. reactions take place. The idea of
for_ which only the corr_elations between pairs of nearest, . pvc 'methoéj is n,ot tc; compute probabiliti@.%(t) ex-
ne?ﬁgﬂ:ﬂ\gﬂ)lare corr]15|der;ad. . imation i plicitly, but to start with some particular configuration, rep-
pling Scheme for-our pair approxXimation IS o sentative for the initial state of the experiment one wants to
(XY)Y2) sjmulatg, and then generate a sequence of other configura-
(XY= —c. (12)  tions with the correct probability. The method generates a
) timet’ when the first reaction occurs according to the prob-
. ) . ability distribution 1—-exp(—R,,t). At time t’ a reaction
It is straightforward to see that the closure relatidi) gkes place such that a new configuratighis generated by

holds: picking it out of all possible new configurationd with a
(XY) 1 probability proportional toN ., . At this point we can pro-
XY 2)= Y Z) = — (XYY =(XY). ceed by repeating the previous steps, drawing again a time
; XYz (Y) ; (Y2 <Y>< HY)=(XY) for a new reaction and a new configurati@5—47.

(13
. . . . Ill. RESULTS AND DISCUSSION
After decoupling, this system of coupled sets of differential
equations, consisting of the rate equations for one-site and In Ref.[17] various results for the system with conversion
two-site probabilities, becomes closed and can be solved nW,,# 0) and without conversionW,,=0) were reported.
merically. In caseW,,=0 we have onlyA particles in the system. The

066705-4
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total loadingQ of the system is defined as the average num- d(x,)

ber of particles per site. In ca®,#0 we haveB’s as well gt~ Ward1- (X1)]=Wied X1) + W[ (X2) = (X1)]
in the system. In this case, the total loadi@gis the sum of

the loading withA particles Q) and loading withB par-  gnd

ticles (Qg)
s s d(Xs)
1 > 1 S (B L —ar add 1= (Xg) ] = Waed Xg) + W[ (Xs-1) —(Xg)].
_énzl <An>+§n:1< n)- ( 7) (21)

Note that the total loading of the pipe for the model with These equations are used for the derivation of the relax-
conversion is the same as for the model without conversioation time. The rate equations are going to be simplified to a
[17]. We study the relaxation time of the system withoutpoint where they are a set of homogeneous linear ordinary

conversion and of the system with conversion. differential equation$ODE'’s) with only one parameter apart
from the system size. Dividing bW 4+ Wyesand introduc-
A. No conversion ing the dimensionless parameters
We are interested in the relaxation time of the system Woags

(transients We start with the evolution of the total loading (Xed= W

over time starting from a system with no particles at all. As ads? Tdes

the total loading is the same for the case with and without W

conversion, we will consider, for simplicity, the case with no A= it

conversion first. Wadst Wees

As we can derive a finite set of exact rate equati@s
(8) it’'s not necessary to work with the master equation in this
case. With(X,) the probability that siten is occupied, we
have

7=(Wagst Wgedt, (22)
we get
d{X,) d{Xy)
n
dt = Wil = (Xn*ne 1) = (a-2* Xn) +{(Xn-1%n) dr

= (Xeg = (X1) + A[(X2) = (X1)],

(X 1)] (18) T A1)~ 20%) + (X)),

whenn is not a marginal site. The two-site probabilities can
be eliminated by using closure relations, d(X S>

(XX 1)+ Kt 1) = (X (19 4~ X (X9 +A(Xs-1) = (X9l (23

that hold in this specific case. The probabilities with particles e can write these equations in matrix-vector notation as
on both neighboring sites cancel and the result is d(X)
d{X) W:_M<X>+V’ (24)
T:Wdiﬁ[<xn—1>_2<Xn>+<xn+1>]- (20)
where(X) is a vector containing the occupancy probabilities,
For the marginal sites we get M is the matrix of coefficients having the form

1+ —N O 0
- 2 -\ O
0 N 2N -\

: : : (25)
28 -x 0 0

-A 20 -\ 0
0 -\ 20 -\
0 0 -\ 1+\
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andyv is the vector that makes the system nonhomogeneousthere
The paramete(X,) is the equilibrium coverage.

Finally we can make the set of equations homogeneous by f= @ (33)
working with probabilities for vacancies: i.e., with N
(X) There are two cases to be distinguishedf#4, then
y=1- Xeo (260 both solutions are real. Because this is the same=ag\,
€ we will have this for slow diffusion and for eigenvectors
we get with fast relaxation(large w). As we are interested in the
slowest relaxatiorfsmall ) we will look at the other case
dy f<4 or w<4\. The two solutions are then each others’
Tdr My (27) complex conjugate(Note for the following thatf=0.)
In order to solve Eq(27), we try the substitution 2. Fast diffusion or slow relaxation
L wr In this case we can write the solutions as
y=ae “". (28
z.=re¢, (34)

Taking out the exponential leaves us with
B wherer and ¢ are both real. In fact the equation fpshows
Ma=wa. (29 that whenz is a solution, then so is 4/ This means that

Removing the time dependence yields relaxation times. W& ** ©"

see that we have obtained an eigenvalue equation. The eigen- z.=e*i?, (35)
valuesw are the reciprocals of relaxation times for the cor- o - _
responding eigenvectors. The relaxation time of the systerfubstitution in the equation faryields

as a whole ;) is the reciprocal of the smallest eigenvalue. cose=1—1f (36)
We can get this time by simply numerically solving the ei- 2
genvalue equation for giveBand\. This has indeed only solutions forOf <4.
Because there are two solutions forthe solution fora,,
1. Solving the eigenvalue equation analytically is a linear combination of these two solutions: i.e.,
For some special cases analytical expressions for the ei- a,=c,e"¢+c,e n¢. (37)

genvalues can be given. We consider the ansatz

From Eq.(28) we remark that, should be always real.
This means that, is the complex conjugate of,. The
coefficients will follow from the equations for the marginal
sites. There are two of these equations. The equation above
for cose is a third equation. We have four unknowns, (

a,=2". (30)

If we substitutea,, from expressiori29) into the equation for
n not a marginal site, we get

1 C,, w, andg), but, as only the ratio between the coefficients
N—2+2-z)=o. (3)  can be determined, we should effectively be able to deter-
mine all of them.
This equation has two solutions. Substitution of the expression far, in the equations for

the marginal sites, taking into account thgt and c, are

z.=1—3f+3\f?—4f, (320  complex conjugated; =c,g+icy)), leads to

|
2(1—w+\)coq ¢)—2Nc0oq2¢) —=2sin@)(1—w+\)+2\siN(2¢)

C1R 0
C1|):<0)' 38

This equation only has nontrivial solutiofthe trivial solution isc;g=c4,=0) when the determinant of the matrix equals zero.
This leads to the following equation:

2c0$S¢)(1— w+N)—21cog (S—1)p] —2(1—w+\)sin(Se)+2\siM(S—1)¢]

BN (—w+A+1)siN(S—2)p]—4(—w+N+1)%si(S—1)e]+4NsiN (S—3)¢]=0. (39

We can eliminates by using cosp=1—1/2.
Using ¢ as parameter in Eq39), ¢ €[0,7), we can get tha's. Equationg35) and(32) gives us thav’s. We get in this
way w as a function of\, coupled by the parameter (see Fig. 2
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FIG. 2. The general solution for In(@) as a function of In), FIG. 3. The logarithm of the relaxation time as a function of
for ¢ €[0,7), andS=30. In(S) for the parameter8V 3= 0.2, Wye=0.8, and differentVyy .

3. Solving the eigenvalue equation for the total loading, in the

CaseN— % This limiting value is the same as the one indicated by the

convergence of the curves in Fig. 2. The other parameter that
We solve the eigenvalue equation numerically in order tdnfluences the relaxation tinte,, is the length of the pip&.

get the relaxation time of a system. We want to describe hovgor diffusion very fastt, increases linearly witts (see

the relaxation time of the total loading,{) depends on Fig. 3).

system parameters such as reaction, adsorgtiesorption,

diffusion rate constants, and system s&én Fig. 2 we show

the influence of diffusion on the relaxation time for a system B. Conversion

of sizeS=30. Note that there are two regimes describing the | the case with no conversion, we have derived a set of

dependence on diffusion of the relaxation titag. The first  exact equations and we have simplified the rate equations to

regime is for slow diffusion, whety, decreases rapidly with  homogeneous linear ODE's. Including conversion in our

increasing diffusion, and the second for fast diffusion, whenmodel, the two-site probabilities cannot be eliminated and an

tie slowly decreases with diffusion to a limiting value. approximation is needed. We use the MF approximation and
Because diffusion is |nf|n|t9|y faSt, all the sites have thewe get a Coup|ed set of differential equations that we can

same probability to be occupied and the system is homogesolve numerically. In Fig. 4, from the MF results for the

neous. We can then analytically derive the limiting value oftransients, we observe that there are two different behaviors

tre for infinitely fast diffusion from the equation determined by conversion.
For fast reaction systenisee Fig. 4a)], the relaxation
d(Xp)  2Wags 2Wes time of the loading withA’s (t,¢4) andB’s (t,eg) is equal
dt S [1= (X1~ S (Xn)- (40 {5 the relaxation time of the total loading;{;). This means

that whenQ has reached equilibriun@Q, and Qg have also
The first term is the probability of a particle to be adsorbed af€¢ached equilibrium. _ .
the two open ends, and the second is the probability of a FOr slow reaction systenfsee Fig. 40)], the total loading
particle to be desorbed at the two open ends. The probabilitf rélaxes faster to equilibrium than the loading wifs
of a particle to be adsorbed to one end equals the adsorptid®a) andB’s (Qg). The regime betweeQ reaching equi-
rate constantV,q times the probability to have there a va- librium and Q and Qg reaching equilibrium we call the
cancy (1-(X,)), while the probability of a particle to be reaction limited regime.

desorbed equals the desorption rate constéqt times the We remark that for slow reaction systems in the reaction
probability to have a particle(K,)). limited regime, the vacancy probability can be replaced with

From the above equation we get the expressiof(Xgp, ~ the steady-state expressign,)=Wies (Wagst Waed- The
set of equations for the case when all the sites are reactive

then becomes

—2(W,4+W,
(Xoy=(Xe 1—exp< ( adss d“)t) (41)
d{An)  WaitWaes
dt = Y, e Wdes[<An+l>+<An—l>_ 2<An>]_Wrx<An>'
The relaxation time is &
S d(Bn) Wit Wees
tre|—m- (42 T WadS+Wdes[<Bn+l>+<Bn—l>_2<Bn>]+WrX<An>'
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FIG. 4. (a) Time dependence of IQF), In(Qx*), and InQg*) for fast reaction systemdNg= 0.8 W= 0.2 Wy = 1;W,,=2). (b) Time
dependence of the 1§F), In(Qx*) and InQg*) for slow reaction systemsW,ge= 0.8 Wye= 0.2 Wit =2;W,,=0.01). (c) Comparison
between time dependence of @t(), In(Qx*), In(Qg*) and the time dependence of the function ex@{,*t). For slow reaction systems, the
slope depends only dW,,, but also on desorption. We have marked the time dependence of @ JvfhenWy.=0. In (a)—(c) we have
marked with * the absolute value of the difference between the current value and the steady-state value of the parameter.

d(A1) Wi Waes
dt - Wads+ Vvdes:[<A2> a <Al>:| B WrX<A1>
WadéNdes
WA G W
d<Bl> Wdifdees
dt o Wads+ Wdes[< BZ> - < Bl)] + Wrx<A1> - Wde& Bl>:

d(As) Wit Waes
at Woget Wdes[<AS_ 1)~ (Ag) 1= Wi (As)

Wadsvv des

—Wyed Ag) + ,
de& S> Wads+Wdes

d(Bs)  WairWaes
dt Wageh Wdes[<Bs— 1)~ (B9 ]+ Wy (Ag) — Weed Bs).

(43

We can use these approximate MF equations for the prob-
lem of relaxation ofA andB loadings for the case when the

where(A) is a vector containing the occupacy probabilities
with A’'s, M’ is the matrix of coefficients, and’ is the
vector that makes this systems honhomogeneous having non-
zero elements for indices 1 an8 We substitute(A)
=(A)sstcin the rate equationAl), wherec is the vector

with the deviations of the site occupancy probabilities with
A’s from the steady state. The substitution yields

dc
a=M’[(A)SS+c]+v’=M "c+tM'(A)sstV' =M'c,

(49)

becausév ' (A)ss+Vv' =0 by definition.

The equations irc are homogeneous and the matrix of
coefficients is the same as the one in the original rate equa-
tions. We can obtain the eigenvalue equation by making the
substitution

c=c'e (46)

total loading has already reached a steady state. The equa-

tions for A’s can be written as

d(A)

T M'(A)+V’,

(44)

and taking out the exponential from the equations. The re-
laxation time of theA loading Q) is then the reciprocal of
the smallest eigenvalue. We can get this time by simply nu-
merically solving the eigenvalue equation.
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FIG. 6. Time dependences for @(*) for a slow reaction sys-

= = = =2 G= i i 0 : : : ' : : :
tem Wags _0.8,Wdes 0.2W,=0.1Wyz=2,S _30) in the reaction 0.2 0.4 06 08 1 12 14
limited regime when a number of ten reactive sites are homoge-
neously distributed in the system. The continous line is for the Wdes

numerical results obtained solving the eigenvalue equation of the
system in the reaction limited regime, and the dashed line is for the FIG. 7. The analytical results for the relaxation Qfy as a
MF results. We have marked with * the difference between thefunction onWgcsfor different reaction rates. The continuous line is
current value and the steady-state value of the parameter. for W,=0.1 and the dashed line fow,,=0.01, when Wqes
e[0,2].
Solving the eigenvalue equation for the case with conversion

For fast reaction systems we have seen that using MF, the We remark that the analytical results f@, obtained
A and B loadings have the same relaxation, which is thefrom the eigenvalue equation do not give the MF peaR’sf
relaxation of the total loadin [see Fig. 4a)]. The relax-  particles accumulated in the transient regime for a slow re-
ation of Q, can be thus derived from exact equatiqd8)  action systenisee Fig. .
and (14). For slow reaction systems we can derive analyti-
cally the relaxation ofQ, and Qg for the reaction limited
regime. In this case we expect the relaxatiorQqf and Qg
to be determined only by reaction. From the MF results we We present now the results obtained for the transients
remark that desorption has also a strong influence on thasing DMC methods for different sets of parameters. We
transientysee Fig. 4c)]. This is happening because, in the compare them with the mean-field and pair approximation
case desorption is very high, the adsorbed particles at thesults. As for very large pipes the computational effort is
marginal sites will hardly diffuse into the pipe, most of them considerable, we study a system of si@e30. We have
being desorbed immediately. As a result, few particles willconsidered separately the sets of parameters in Table I.
succeed in getting to the middle sites and the residence time The sets of parameters fro) to (e) are for the cases of
of the particles near the marginal sites will decrease. Théow loading and from(f) to (j) for high loading. The param-
loading of the pipe with particles will converge slower to the eters in the table describe the following situatiof@:and (f)
steady state. We have compared also for different distribufor very slow reaction and slow diffusior(b) and (g) for
tions of the reactive sites the results obtained solving the
eigenvalue equation and the MF results for the system in the
reaction limited regime. We find that if marginal sites are a
reactive the results are similar but differ considerably if the
middle sites are reactive and for the homogeneous distribu-
tion of the reactive sites. In Fig. 6 we can see the difference
between MF results and analytical results obtained solving 4
the eigenvalue equation for the system in the reaction limited o

. o oslf T

regime for the case when we have a homogeneous distribu- 0z /

tion of the reactive sites in the system. ﬁ
Analytically, solving the eigenvalue equation for a very ) , . )

slow reaction system, we find that the relaxation @f 0 200 400 600 800 1000

(te1n) as a function of desorption varies with reaction for time

low desorption rates and converges to a limiting value for g 5 (a) MF results(dashed ling and analytical results ob-

very high rates of desorptiaisee Fig. J. The dependence of tained solving the eigenvectors in the reaction limited regicoa-

Aloading onWeshas two regimes, the first for low desorp- tinuous ling for time dependence o®, for the parametersV,q,
tion rates wheri loading strongly decreases with desorption, = 0.8 W= 0.2W,,=0.01 Wy =2.0S=30 and all the sites reac-

and the second when tieloading is converging to a limit-  tive. The upper dashed line represents the total loat@gdn the
ing value and the adsorption process takes over the systesgstem. The total loadin@® gives us the information when the
behavior. reaction limited regime starts.

C. Comparisons with simulation results
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TABLE I. The sets of parameters used for the simulations 012 — i —
ol 8
Case Wads Wdes Wdiff Wrx .........................................................................
@ 0.2 058 0.05 0.01 o e —
(b) 0.2 08 0.05 0.1 oo |
(c) 0.2 0.8 2 0.1
0.04
(d) 0.2 0.8 1 2
(e) 0.2 0.8 10 2 0.02 F
f) 0.8 0.2 0.05 0.01 . . . ‘ ‘ ‘
(9) 0.8 0.2 0.05 0.1 0 500 1000 1500 2000 2500 3000
(h) 0.8 0.2 2 0.1 time
(?) 0.8 0.2 1 2 FIG. 9. MF results for the time dependence@f for Q=0.2,
1) 0.8 0.2 10 2 0.5, 0.8, andW,,=0.01.

Because the reaction is slow and diffusion fast, may
_ ] start accumulating into the system and they are only later
tion and fast diffusion(d) and (i) for fast reaction and slow -gnverted intd’s. The moment,, ., when the peak appears
diffusion; (e) and(j) for fast reaction and fast diffusion. is determined by the ratio betweshys and S, but always

As the MF results for the total loading are exact, there aréghortly after the initial moment, and it lasts only a short
as expected, no differences between these results and thg§ge The height of the peak depends on the fotal loading
of the simulation for the total loading. We compare the MF(Wads/WdeQ (see Fig. 9 and on the ratio betweew,, and
results with the simulation results fo_r the case with converyy . (see Figs. 10 and L1For the case of slow reaction and
sion in the case all sites are reactive and also when only, gt diffusion(f), (g), (h) in Table II, the higher the peak, the
some of the sites are reactive. lower the ratio betweehV,, and Wi . In Table Il we give
the relative height of the peakA{H/Q,) for different W,,
andWgy; , at high loading W,y 0.8 Wyes—0.2), whereAH
is the height of the peak.

slow reaction and slow diffusior(c) and (h) for slow reac-

1. All sites reactive

We first look at the time dependence of the loading with
(Qa) and loading withB (Qg). From the simulation results MF overestimates the height of this peak comparing with
we see several regimes for the transients. simulation results, but both DMC and MF results converge in

In the case diffusion is slow, the relaxation time is deter-the same way to the steady state. In Fig. 12 we show that MF
mined by diffusion. When diffusion is fast and the reactionresults corresponds to DMC results for transients for slow
slow, then the relaxation time is determined by reaction andeaction systems. When diffusion is slow and reaction is fast,
when both are fast, relaxation time is determined by adsorpMF predicts very well the DMC results. We have also in this
tion (desorption. For all these cases the simulations resultscase an overshoot f@, in the transient regime. When we
for the transients match the MF results, except when we havieave slow diffusion and very slow reaction, the height of the
low reaction rates and fast diffusion for both low and highpeak increases with boW,, and W [see Table 1l for(d),
loading (see Fig. &. (e), (f)]. Also in this case the MF corresponds to the DMC

When diffusion is fast and reaction is slow, MF overesti- results.
mates the number A&’s in the pipe both for transients and  As MF ignores the spatial correlations between NN sites
for the steady state. DMC and MF results indicate an overand MF gives qualitatively good results comparing with
shoot forQ, both for high and low loadings in the transient DMC results, we conclude that MF is a good enough ap-
regime. The overshooting appears as a consequence of theoximation for the case when all the sites are reactive. This
difference the between diffusion and reaction rates constant& confirmed also by the comparison between MF and pair

0.18 0.18

0.16 |

06t ¢

014

m 0.12
Qo o}

N

0.08
O< 008 |

0.04 |

0.02

0 200 400 600 800 1000

time

0
0 2000 4000 6000 8000 10000
time

FIG. 8. DMC and MF results for the time dependenceQgfandQg for the casega) and(c) in Table | when all the sites are reactive.
Results for case#h) and (f) are similar to(a) and results for caséh) are similar to caséc). The straight lines visible for cade) (fast
diffusion-slow reactiopare the MF lines. In the other cases the MF and the DMC results are indistinguishable.
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0.45 TABLE Il. The height of the peak for different,, andWy;s.
04
0.35 Case Wrx Wdiff A H/QA
ol MF Sim
025
& 02 @ 0.01 2.0 1.5905 2.9521
0.15 (b) 0.1 2.0 2.1590 2.693
01§ S (© 1.0 2.0 2.9911 2.9984
005 | 1 (d) 0.01 0.05 1.4365 1.2761
o L : (e 0.01 0.1 1.5070 1.4546
0 100 200 300 400 500 600
time () 0.01 1.0 1.6458 2.654
(9) 0.01 2.0 1.5904 2.9384
FIG. 10. MF results for the time dependence @f for W, (h) 0.01 10.0 1.4095 3.141
=0.01, 0.1, 1, WheM/adSZO.S andees= 0.2. (I) 2.0 20 3.329 3.305

approximation. The pair approximation gives the same re-

sults as MF. taneously with theB loading. We compare thus DMC and
MF results for different distributions of the reactive sites, for
different reaction rates. We will analyze two cases, the first
We want to see how the distribution of the reactive sitefor slow reaction W,,=0.1) and the second for very slow
influences the relaxation & and B loadings. We compare reaction {V,,=0.01).
the MF and the DMC results for fast reaction and for slow In the first case \V,,=0.1), theB loading for homog-
reaction systems, for different distributions of the reactiveenous distribution and middle site reactive reaches equilib-
sites. We distinguish homogeneous distribution of the reacrium faster than in the case when marginal sites are reactive.
tive sites, marginal sites reactive, and middle sites reactiveThis is happening because for marginal sites reactive case,
We have previously seen that for fast reaction systems antthe B’s are formed near the open ends and, consequently,
all sites reactive, the relaxation @, andQg is the same as they can easily desorb and the equilibrium is reached later.
the relaxation of the total loadin@. From Ref.[17] we  When the marginal sites are reactive, the residence time of
know that the results for the total loading, both for transientghe B’s is small and the probability to find B on a marginal
and for the steady state, can be derived analytically fronsite is high. The loading witl's is increasing more slowly
exact equations and these results corresponds to the DM@ the steady state value because of A that are in the
results. When only the marginal sites are reactive and reaeniddle of the pipe. The same behavior has théoading
tion very fast, DMC and MF results are similar with DMC converging to equilibrium simultaneously witB loading.
and MF results for the cases when all sites are reactive and/hen the reactive sites are distributed in the middle of the
when it is a homogeneous distribution of the reactive sites ipipe, because of blocking, th&’s cannot reach easily the
the pipe. When the reactive sites are situated in the middle adpen ends, the probability to findBon a marginal site is
the pipe, the loading®,Q,, andQg relax slower to equi- small, and the residence time of ti&s in the system is
librium than in the case wherein all the sites are reactivelarge. The loading witiB's is increasing fast to the steady
because it takes more time for tiAeparticles to reach the state value. From Fig. 13, we see ti@t and Qg for homo-
reactive sites. geneous and middle sites reactive have the same relaxation.
For slow reaction systems and all sites reactive, the relax-
ation of Q, andQg is slower than the relaxation of the total .
loading Q. For this case we cannot deriv@, from exact
equations. Thé loading is converging to equilibrium simul-

2. Only some of the sites reactive

)

&

0.6

In(Q})

&»

-7

8 P
100 150 200 250 300 350 400 450 500 550 600
time

FIG. 12. Analytical and simulation results for slow reaction sys-
tems,Wgir=2, W,,=0.1, W 3= 0.8, Wy.=0.2, when all the sites
are reactive. The simulatigicontinuous ling and analyticaldotted
line) results for the INQ*) as a function of time. We have marked

FIG. 11. MF results for the time dependence@f for Wi with * the difference between the current value and the steady-state
=0.05, 0.1, 1, 2, 10, wheW,4=0.8, Wy 0.2W,,=0.01. value ofQ,.
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FIG. 13. (a) Time dependences for IQg*) when W4~=0.8, Wy4.—=0.2, Wyz=2, W,,=0.1 using MF for marginal sites reactive,
homogeneous distribution, middle sites reactive, and all sites reactive ¢bsd$me dependences for IQ6*) when W,3=0.8, Wies
=0.2, Wyix=2, W,=0.01 using MF for the same distributions of the reactive sites dg)inn (a) and (b) we have marked with * the
absolute value of the difference between the current value and the steady-state value of the parameter.

In the case of very slow reactioW\{,=0.01), when the We finally look at the site occupancy of the pipe. The MF
marginal sites are reactive, th® loading increases faster profiles for the marginal sites reactive case show in the tran-
than in the case of homogeneous and middle sites reactiveient regime accumulation of thé’s in the middle of the
till a certain time becaus@ particles can reach faster the pipe for a slow reaction system and fast diffusion. Because
reactive sites. While morB’s are formed, theB loading is  reaction is slow, theA’s can pass without reacting to the
converging slower because tBé& can desorb relatively fast nonreactive sites. As the loading is increasing, the residence
from the marginal sites, the residence time of the forfd&sd time of the particles increases, and the probability to find an
is smaller than in the case when the reactive sites are in th& in the middle of the pipe decreases because of blocking
middle of the pipe or homogeneously distributestte Fig. (see Fig. 16
13). Qg converges faster in case the middle sites are reactive Dynamic Monte Carlo simulations show the same behav-
than in the case of homogeneous distribution of the reactiveor. In Fig. 17 we see as well accumulationAdfparticles in
sites. the middle of the pipe in the transient regime. As a conse-

We compare the time dependence of wading and of quence, until the equilibrium is reached, the middle sites
the B loading using DMC and MF for slow reaction systems have different contribution to the occupancy in the pipe de-
and different rates of conversion when diffusion is fese pending on their position. In the steady state, all the middle
Fig. 14. We see that differences appear in the transient resites have the same contribution to the occupancy profiles
gion as well as in the steady state for all the distributions of17].
the reactive sites but are very prominent for the marginal and

middle sites reactive case. In this case, for homogeneous
Lo . . . IV. SUMMARY
distribution of the reactive sites the differences between MF
and DMC are smal(see Fig. 1b We have used DMC and analytical techniques to study the
For the other casegfast reaction—slow diffusion, fast properties of single-file systems in the transient regime.
reaction—fast diffusion, slow reaction—slow diffusjpMF We have derived exact equations to solve the relaxation
gives good results compared to DMC for all the distributionstime of the whole systent(.,). We found that there are two
of the reactive sites. regimes describing the dependence on diffusion of the relax-
0.7 08
0.6 B a 07t
o5t / ] 06 [7 B b
m =)
®) 0al / | o 0.5
< /,4’ o 04
(@Y / 1 & 03
02 E 02k
o A - A
0.1 V 0.1 R
o . )
% 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
time time

FIG. 14. (a) DMC simulation of time dependences fQr, and Qg for W 3= 0.8 Wyes= 0.2 W= 0.05W,,= 0.01, when blocks of five
marginal sites are reactivé&s€ 30). The straight lines correspond to the MF resuls.DMC simulation of time dependences f@x, and
Qg for W3 0.8 Wye= 0.2 W4 = 2,W,,= 0.1, when blocks of five marginal sites are reacti®-@30). The straight lines correspond to the
MF results.
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FIG. 15. (a) Time dependences for IQg*) for a slow reaction systemN,q= 0.8, Wyee=0.2, W,,= 0.1, W= 2, S=30) when five left
and right marginal sites are reacti\®) Time dependences for IQy*) for a slow reaction system\,g—= 0.8, Wyee= 0.2, W, = 0.1, Wi
=2, S=30) when ten reactive sites are homogeneously distributed in the systéap.aimd (b) the continuous line is for the DMC results
and the dashed line is for the MF results. We have marked with * the difference between the current value and the steady-state value of the
parameter.

ation timet,.,. The first regime is for slow diffusion, when value for very high rates of desorption.
t,e) decreases fast with increasing diffusion, and the second DMC results show several regimes for the transients, in
for fast diffusion, whert,, slowly decreases with diffusion the case all the sites are reactive. In the case diffusion is
to a limiting value. We have analytically derived this limiting slow, the relaxation time is determined by diffusion. When
value oft,¢ for infinitely fast diffusion. diffusion is fast and the reaction slow, then the relaxation
We have also studied the transients in the case with cortime is determined by reaction and when both are fast, relax-
version. MF results show that there are two different behavation time is determined by adsorptiddesorption. For all
iors determined by conversion. For fast reaction systems, thiéiese cases the simulations results for the transients match
relaxation time of the loading witA'’s (t,.;a) andB’s (t,e;zg)  the MF results, except when we have low reaction rates and
is equal to the relaxation time of the total loading.().  fast diffusion for both low and high loading. In this case MF
When Q has reached equilibriunQ, and Qg have also overestimates the amount éfs in the pipe both for tran-
reached equilibrium. For slow reaction systems, the totasients and for the steady state. DMC and MF results indicate
loading Q relaxes faster to equilibrium than the loading with also an overshoot foQ, both for high and low loadings in
A’'s (Q,) andB’s (Qg). The regime betwee reaching the transient regime, which appears as a consequence of the
equilibrium andQ, andQjg reaching equilibrium we call the difference between diffusion and reaction rates constants.
reaction limited regime. In the reaction limited regime, MF ~ When only some of sites are reactive, for fast reaction
shows that not only reaction, but also desorption has a strongystems, MF gives good results compared to DMC for all the
influence influence on the transients. We find that the relaxdistributions of the reactive sites. When only the marginal
ation of Q, (t,0;a) as a function of desorption varies with sites are reactive and reaction very fast, DMC and MF results
reaction for low desorption rates and converges to a limitingare similar with DMC and MF results for the cases when all

e
®

<A, >,<B,>

25

n
FIG. 16. MF profile occupanciegA,,) and(B,})) for the case of FIG. 17. DMC results for the occupancy profile§A() and

five marginal sites reactive before a steady state is reached for @,)) for slow reaction systems Wy 0.8 Wyee= 0.2 Wi

slow reaction system of leng®= 30 and parametei®/,4=0.8and =2W,,=0.1) in the case five marginal sites are reactive, before

Wgee= 0.2, Wyir=2, W,,=0.1. The lines at low occupancies corre- steady state is reached. The lines at low occupancies correspond to
spond to{A,,) profile occupancies after 200, 150, and 100 time units(A,) profile occupancies after 280, 100, and 20 time units in this
in this order from the bottom to the top. The lines at high occupan-order from the bottom to the top. The lines at high occupancies
cies correspond t0B,)) profile occupancies after 200, 150, and 100 corresponds t¢B,) profile occupancies after 280, 100, and 20 time
time units in this order from the top to the bottom. units in this order from the top to the bottom.
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sites are reactive and when it is a homogeneous distributiond(,A,)
of the reactive sites in the pipe. When the reactive sites are—; =Wairt((Ar* 2) +(* 1% 2A3) = (*1A2) = (1* Az* 3))
situated in the middle of the pipe, the loadin@sQ,, and

Qg relax slower to equilibrium than in the case when all the ~Wi{*1A2) = Wagd* 1A2) + Waed (A1A2)
sites are reactive, because it takes more time forAtipear-
ticles to reach the reactive sites. +(B1A2)),

For slow reactive systems, differences between DMC and
MF results appear for transients for different distributions of
the reactive sites when diffusion is fast, but are very promi-
nent for marginal and middle sites reactive. For homoge-  d(;*x ,)

neous distribution of the reactive sites the differences be- — g = Wair((1* Az*3) +(1* B2*3) = (1** 2A3)
tween MF and DMC are small. For slow reaction, we find

that theB loading for homogenous distribution and middle —(1**2B3)) = Wagd1** 2) + Wyed (A1* 2)
site reactive reaches equilibrium faster than in the case of

when marginal sites is reactive. For very slow reactiog, +(B1*2)), (A2)

increases faster at the beginning than in the case of homoge-

neous and middle sites reactive and becomes slower as the

B's are formed.Qg converges also faster in the case thewhere (Aj*,Az)=(A;*,)(Ay*3)/(,*), etc. Almost similar
middle sites are reactive than in the case of homogeneouwe the equations for the right marginal sites
distribution of the reactive sites.
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APPENDIX
—WeedAs-1As),

Derivation of the equations for two-sites probabilities
In order to solve the rate equations of the system we use

cluster approximation. For simplicity, we consider an ap-
proximation that considers only the correlations between d(As_1*s)

pairs of NN sites—pair approximation. We add the two-site dt =Wain((As—1*s*s+1) T *s-1A9) ~(As-1*s)
probability equations to the already derived rate equations
for one-site probabilities. We write these equations in terms ~(s-2*As-1* §)) = Wi{As_1*5)
of three-site probabilities and we use then the decoupling — WogdAs11% &)+ Waed (As_1AQ)
scheme
+ <AS*lBS>)1
(XYXY2Z)
(XY2)= T (A1)
. . _ - d*s 1Ag)
We give here the equations for the two-site probabilities for T=Wdiff(<As_ 1*g) T (s_2*Ag_1Ag)
A and * occupancy of these sites. The equations for the left
marginal sites are +(s-2*Bs-1Ag) —*s 1As) —(As_2* 5 1Ag)
—(Bs-2*s-1Ag)) = Wix* s-1Ag)
AA1A) * * +Waad* s-1* s) — Waed s-1As)
gt~ Wain((Ar* 2As) — (A1A2* 3)) = 2Wi(A1A) & es ’

+ Wad&* 1A2> - Wde4A1A2> )

d(s-1** )
d(AL ) T:Wdiff(<S—2*AS—1*S>+<S—2* Bs-1*s)
1*2
= Wi ((* 1A2) + (A1A* 3) +(A1Bo* 3) = (Ar* )
dt I —(As_2*s1*9) —(Bs_2*s_1*s))
- <Al* 2A3> - <A1* ZB3>) - Wrx<A1* 2> _Wad4s_ 1* * S> + Wdes(* S— 1AS>
+ Wadd* 1% 2) = Waed Ar* 2) +(*5_1Bg)). (A3)

066705-14



TRANSIENT BEHAVIOR IN SINGLE-FILE SYSTEMS PHYSICAL REVIEW B56, 066705 (2002

And, finally, the equations for the nonmarginal sites; d(A* 1)
T=Wdiff(<An*n+1>+<n*n+lAn+2>
+<An—1* nAn+1>+<*n—1BnAn+l>_<An*n+1>
d<AnAn+1>
T:Wdiff(<An*n+1An+2>+<Anfl* An+1) _<An*n+l*n+2>_<Anfl* nAn+1)
_<An—1* A >_<AnAn+1*n+2>) _<Bn—1*nAn+1>)_Wrx<An*n+l>v
nn+1
_2Wrx<AnAn+l>i d<* * +1>
%:Wdiff(<An*n+1*n+2>+<Bn*n+1*n+2>
F(An1*n*np) H(*n-1Br* i)
d<An*n+1>

:Wdiff(<An* n+1> + <An—1* n* n+1> - <* n* n+1An+2> - <* n* n+1Bn+2>
- <An—1* n* n+2> - <Bn—1* n* n+1>)- (A4)

dt

+<AnAn+1* n+2>+ <Aan+ 1* n+2> _<An* n+ 1>

_ _ We have the possibility to determine the one-site prob-
An*pe 1A A* B

(An*n1An+2) = (An*ns1Bns2) abilities by calculating the sum of the two-sites probabilities
_<An—1*n*n+l>)_Wrx<An*n+1>v EY<XY>:<X>'
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