149 research outputs found

    Microscopic calculation of neutrino mean free path inside hot neutron matter

    Get PDF
    We calculate the neutrino mean free path and the Equation of State of pure neutron matter at finite temperature within a selfconsistent scheme based on the Brueckner--Hartree--Fock approximation. We employ the nucleon-nucleon part of the recent realistic baryon-baryon interaction (model NSC97e) constructed by the Nijmegen group. The temperatures considered range from 10 to 80 MeV. We report on the calculation of the mean field, the residual interaction and the neutrino mean free path including short and long range correlations given by the Brueckner--Hartree--Fock plus Random Phase Approximation (BHF+RPA) framework. This is the first fully consistent calculation in hot neutron matter dedicated to neutrino mean free path. We compare systematically our results to those obtain with the D1P Gogny effective interaction, which is independent of the temperature. The main differences between the present calculation and those with nuclear effective interactions come from the RPA corrections to BHF (a factor of about 8) while the temperature lack of consistency accounts for a factor of about 2

    Histone deacetylase inhibitors induce apoptosis in human eosinophils and neutrophils

    Get PDF
    BACKGROUND: Granulocytes are important in the pathogenesis of several inflammatory diseases. Apoptosis is pivotal in the resolution of inflammation. Apoptosis in malignant cells is induced by histone deacetylase (HDAC) inhibitors, whereas HDAC inhibitors do not usually induce apoptosis in non-malignant cells. The aim of the present study was to explore the effects of HDAC inhibitors on apoptosis in human eosinophils and neutrophils. METHODS: Apoptosis was assessed by relative DNA fragmentation assay, annexin-V binding, and morphologic analysis. HDAC activity in nuclear extracts was measured with a nonisotopic assay. HDAC expression was measured by real-time PCR. RESULTS: A HDAC inhibitor Trichostatin A (TSA) induced apoptosis in the presence of survival-prolonging cytokines interleukin-5 and granulocyte-macrophage colony stimulating factor (GM-CSF) in eosinophils and neutrophils. TSA enhanced constitutive eosinophil and neutrophil apoptosis. Similar effects were seen with a structurally dissimilar HDAC inhibitor apicidin. TSA showed additive effect on the glucocorticoid-induced eosinophil apoptosis, but antagonized glucocorticoid-induced neutrophil survival. Eosinophils and neutrophils expressed all HDACs at the mRNA level except that HDAC5 and HDAC11 mRNA expression was very low in both cell types, HDAC8 mRNA was very low in neutrophils and HDAC9 mRNA low in eosinophils. TSA reduced eosinophil and neutrophil nuclear HDAC activities by ~50-60%, suggesting a non-histone target. However, TSA did not increase the acetylation of a non-histone target NF-κB p65. c-jun-N-terminal kinase and caspases 3 and 6 may be involved in the mechanism of TSA-induced apoptosis, whereas PI3-kinase and caspase 8 are not. CONCLUSIONS: HDAC inhibitors enhance apoptosis in human eosinophils and neutrophils in the absence and presence of survival-prolonging cytokines and glucocorticoids

    Can Neutron Star Mergers Alone Explain the r-process Enrichment of the Milky Way?

    Get PDF
    © 2023. The Author(s). Published by the American Astronomical Society. This is an open access article under the terms of the Creative Commons Attribution License, https://creativecommons.org/licenses/by/4.0/Comparing Galactic chemical evolution models to the observed elemental abundances in the Milky Way, we show that neutron star mergers can be a leading r-process site only if at low metallicities such mergers have very short delay times and significant ejecta masses that are facilitated by the masses of the compact objects. Namely, black hole–neutron star mergers, depending on the black hole spins, can play an important role in the early chemical enrichment of the Milky Way. We also show that none of the binary population synthesis models used in this Letter, i.e., COMPAS, StarTrack, Brussels, ComBinE, and BPASS, can currently reproduce the elemental abundance observations. The predictions are problematic not only for neutron star mergers, but also for Type Ia supernovae, which may point to shortcomings in binary evolution models.Peer reviewe

    Magnetically-driven explosions of rapidly-rotating white dwarfs following Accretion-Induced Collapse

    Full text link
    We present 2D multi-group flux-limited diffusion magnetohydrodynamics (MHD) simulations of the Accretion-Induced Collapse (AIC) of a rapidly-rotating white dwarf. We focus on the dynamical role of MHD processes after the formation of a millisecond-period protoneutron star. We find that including magnetic fields and stresses can lead to a powerful explosion with an energy of a few Bethe, rather than a weak one of at most 0.1 Bethe, with an associated ejecta mass of ~0.1Msun, instead of a few 0.001Msun. The core is spun down by ~30% within 500ms after bounce, and the rotational energy extracted from the core is channeled into magnetic energy that generates a strong magnetically-driven wind, rather than a weak neutrino-driven wind. Baryon loading of the ejecta, while this wind prevails, precludes it from becoming relativistic. This suggests that a GRB is not expected to emerge from such AICs during the early protoneutron star phase, except in the unlikely event that the massive white dwarf has sufficient mass to lead to black hole formation. In addition, we predict both negligible 56Ni-production (that should result in an optically-dark, adiabatically-cooled explosion) and the ejection of 0.1Msun of material with an electron fraction of 0.1-0.2. Such pollution by neutron-rich nuclei puts strong constraints on the possible rate of such AICs. Moreover, being free from ``fallback,'' such highly-magnetized millisecond-period protoneutron stars may later become magnetars, and the magnetically-driven winds may later transition to Poynting-flux-dominated, relativistic winds, eventually detectable as GRBs at cosmological distances. However, the low expected event rate of AICs will constrain them to be, at best, a small subset of GRB and/or magnetar progenitors.Comment: 16 pages, 8 figures, paper accepted to ApJ; High resolution version available at http://hermes.as.arizona.edu/~luc/aic_mhd/aic_mhd.htm

    Transport of Magnetic Fields in Convective, Accreting Supernova Cores

    Get PDF
    We consider the amplification and transport of a magnetic field in the collapsed core of a massive star, including both the region between the neutrinosphere and the shock, and the central, opaque core. An analytical argument explains why rapid convective overturns persist within a newly formed neutron star for roughly 10 seconds (>103> 10^3 overturns), consistent with recent numerical models. A dynamical balance between turbulent and magnetic stresses within this convective layer corresponds to flux densities in excess of 101510^{15}G. Material accreting onto the core is heated by neutrinos and also becomes strongly convective. We compare the expected magnetic stresses in this convective `gain layer' with those deep inside the neutron core. Buoyant motions of magnetized fluid are greatly aided by the intense neutrino flux. We calculate the transport rate through a medium containing free neutrons protons, and electrons, in the limiting cases of degenerate or non-degenerate nucleons. Fields stronger than 1013\sim 10^{13} G are able to rise through the outer degenerate layers of the neutron core during the last stages of Kelvin-Helmholtz cooling (up to 10 seconds post-collapse), even though these layers have become stable to convection. We also find the equilibrium shape of a thin magnetic flux rope in the dense hydrostatic atmosphere of the neutron star, along with the critical separation of the footpoints above which the rope undergoes unlimited expansion against gravity. The implications of these results for pulsar magnetism are summarized, and applied to the case of late fallback over the first 1,000-10,000 s of the life of a neutron starComment: 45 pages, 3 figures, Astrophysical Journal, in pres

    The influence of collective neutrino oscillations on a supernova r-process

    Full text link
    Recently, it has been demonstrated that neutrinos in a supernova oscillate collectively. This process occurs much deeper than the conventional matter-induced MSW effect and hence may have an impact on nucleosynthesis. In this paper we explore the effects of collective neutrino oscillations on the r-process, using representative late-time neutrino spectra and outflow models. We find that accurate modeling of the collective oscillations is essential for this analysis. As an illustration, the often-used "single-angle" approximation makes grossly inaccurate predictions for the yields in our setup. With the proper multiangle treatment, the effect of the oscillations is found to be less dramatic, but still significant. Since the oscillation patterns are sensitive to the details of the emitted fluxes and the sign of the neutrino mass hierarchy, so are the r-process yields. The magnitude of the effect also depends sensitively on the astrophysical conditions - in particular on the interplay between the time when nuclei begin to exist in significant numbers and the time when the collective oscillation begins. A more definitive understanding of the astrophysical conditions, and accurate modeling of the collective oscillations for those conditions, is necessary.Comment: 27 pages, 10 figure

    Gravitational Wave Extraction in Simulations of Rotating Stellar Core Collapse

    Get PDF
    We perform simulations of general relativistic rotating stellar core collapse and compute the gravitational waves (GWs) emitted in the core bounce phase of three representative models via multiple techniques. The simplest technique, the quadrupole formula (QF), estimates the GW content in the spacetime from the mass quadrupole tensor. It is strictly valid only in the weak-field and slow-motion approximation. For the first time, we apply GW extraction methods in core collapse that are fully curvature-based and valid for strongly radiating and highly relativistic sources. We employ three extraction methods computing (i) the Newman-Penrose (NP) scalar Psi_4, (ii) Regge-Wheeler-Zerilli-Moncrief (RWZM) master functions, and (iii) Cauchy-Characteristic Extraction (CCE) allowing for the extraction of GWs at future null infinity, where the spacetime is asymptotically flat and the GW content is unambiguously defined. The latter technique is the only one not suffering from residual gauge and finite-radius effects. All curvature-based methods suffer from strong non-linear drifts. We employ the fixed-frequency integration technique as a high-pass waveform filter. Using the CCE results as a benchmark, we find that finite-radius NP extraction yields results that agree nearly perfectly in phase, but differ in amplitude by ~1-7% at core bounce, depending on the model. RWZM waveforms, while in general agreeing in phase, contain spurious high-frequency noise of comparable amplitudes to those of the relatively weak GWs emitted in core collapse. We also find remarkably good agreement of the waveforms obtained from the QF with those obtained from CCE. They agree very well in phase but systematically underpredict peak amplitudes by ~5-11% which is comparable to the NP results and is within the uncertainties associated with core collapse physics. (abridged)Comment: 26 pages, 10 figures, 5 tables, matches published versio

    The Physics of Core-Collapse Supernovae

    Full text link
    Supernovae are nature's grandest explosions and an astrophysical laboratory in which unique conditions exist that are not achievable on Earth. They are also the furnaces in which most of the elements heavier than carbon have been forged. Scientists have argued for decades about the physical mechanism responsible for these explosions. It is clear that the ultimate energy source is gravity, but the relative roles of neutrinos, fluid instabilities, rotation and magnetic fields continue to be debated.Comment: Review article; 17 pages, 5 figure

    Massive stars as thermonuclear reactors and their explosions following core collapse

    Full text link
    Nuclear reactions transform atomic nuclei inside stars. This is the process of stellar nucleosynthesis. The basic concepts of determining nuclear reaction rates inside stars are reviewed. How stars manage to burn their fuel so slowly most of the time are also considered. Stellar thermonuclear reactions involving protons in hydrostatic burning are discussed first. Then I discuss triple alpha reactions in the helium burning stage. Carbon and oxygen survive in red giant stars because of the nuclear structure of oxygen and neon. Further nuclear burning of carbon, neon, oxygen and silicon in quiescent conditions are discussed next. In the subsequent core-collapse phase, neutronization due to electron capture from the top of the Fermi sea in a degenerate core takes place. The expected signal of neutrinos from a nearby supernova is calculated. The supernova often explodes inside a dense circumstellar medium, which is established due to the progenitor star losing its outermost envelope in a stellar wind or mass transfer in a binary system. The nature of the circumstellar medium and the ejecta of the supernova and their dynamics are revealed by observations in the optical, IR, radio, and X-ray bands, and I discuss some of these observations and their interpretations.Comment: To be published in " Principles and Perspectives in Cosmochemistry" Lecture Notes on Kodai School on Synthesis of Elements in Stars; ed. by Aruna Goswami & Eswar Reddy, Springer Verlag, 2009. Contains 21 figure
    corecore