37 research outputs found

    Centering inclusivity in the design of online conferences-An OHBM-Open Science perspective

    Get PDF
    As the global health crisis unfolded, many academic conferences moved online in 2020. This move has been hailed as a positive step towards inclusivity in its attenuation of economic, physical, and legal barriers and effectively enabled many individuals from groups that have traditionally been underrepresented to join and participate. A number of studies have outlined how moving online made it possible to gather a more global community and has increased opportunities for individuals with various constraints, e.g., caregiving responsibilities. Yet, the mere existence of online conferences is no guarantee that everyone can attend and participate meaningfully. In fact, many elements of an online conference are still significant barriers to truly diverse participation: the tools used can be inaccessible for some individuals; the scheduling choices can favour some geographical locations; the set-up of the conference can provide more visibility to well-established researchers and reduce opportunities for early-career researchers. While acknowledging the benefits of an online setting, especially for individuals who have traditionally been underrepresented or excluded, we recognize that fostering social justice requires inclusivity to actively be centered in every aspect of online conference design. Here, we draw from the literature and from our own experiences to identify practices that purposefully encourage a diverse community to attend, participate in, and lead online conferences. Reflecting on how to design more inclusive online events is especially important as multiple scientific organizations have announced that they will continue offering an online version of their event when in-person conferences can resume

    Shared brain and genetic architectures between mental health and physical activity

    Get PDF
    Physical activity is correlated with, and effectively treats various forms of psychopathology. However, whether biological correlates of physical activity and psychopathology are shared remains unclear. Here, we examined the extent to which the neural and genetic architecture of physical activity and mental health are shared. Using data from the UK Biobank (N = 6389), we applied canonical correlation analysis to estimate associations between the amplitude and connectivity strength of subnetworks of three major neurocognitive networks (default mode, DMN; salience, SN; central executive networks, CEN) with accelerometer-derived measures of physical activity and self-reported mental health measures (primarily of depression, anxiety disorders, neuroticism, subjective well-being, and risk-taking behaviors). We estimated the genetic correlation between mental health and physical activity measures, as well as putative causal relationships by applying linkage disequilibrium score regression, genomic structural equational modeling, and latent causal variable analysis to genome-wide association summary statistics (GWAS N = 91,105-500,199). Physical activity and mental health were associated with connectivity strength and amplitude of the DMN, SN, and CEN (r\u27s ≥ 0.12, p\u27s \u3c 0.048). These neural correlates exhibited highly similar loading patterns across mental health and physical activity models even when accounting for their shared variance. This suggests a largely shared brain network architecture between mental health and physical activity. Mental health and physical activity (including sleep) were also genetically correlated (|rg| = 0.085-0.121), but we found no evidence for causal relationships between them. Collectively, our findings provide empirical evidence that mental health and physical activity have shared brain and genetic architectures and suggest potential candidate subnetworks for future studies on brain mechanisms underlying beneficial effects of physical activity on mental health

    Resting state correlates of subdimensions of anxious affect

    Get PDF
    Resting state fMRI may help identify markers of risk for affective disorder. Given the comorbidity of anxiety and depressive disorders and the heterogeneity of these disorders as defined by DSM, an important challenge is to identify alterations in resting state brain connectivity uniquely associated with distinct profiles of negative affect. The current study aimed to address this by identifying differences in brain connectivity specifically linked to cognitive and physiological profiles of anxiety, controlling for depressed affect. We adopted a two-stage multivariate approach. Hierarchical clustering was used to independently identify dimensions of negative affective style and resting state brain networks. Combining the clustering results, we examined individual differences in resting state connectivity uniquely associated with subdimensions of anxious affect, controlling for depressed affect. Physiological and cognitive subdimensions of anxious affect were identified. Physiological anxiety was associated with widespread alterations in insula connectivity, including decreased connectivity between insula subregions and between the insula and other medial frontal and subcortical networks. This is consistent with the insula facilitating communication between medial frontal and subcortical regions to enable control of physiological affective states. Meanwhile, increased connectivity within a frontoparietal-posterior cingulate cortex-precunous network was specifically associated with cognitive anxiety, potentially reflecting increased spontaneous negative cognition (e.g., worry). These findings suggest that physiological and cognitive anxiety comprise subdimensions of anxiety-related affect and reveal associated alterations in brain connectivity

    Mental Health in the UK Biobank: A Roadmap to Self-Report Measures and Neuroimaging Correlates

    Get PDF
    The UK Biobank (UKB) is a highly promising dataset for brain biomarker research into population mental health due to its unprecedented sample size and extensive phenotypic, imaging, and biological measurements. In this study, we aimed to provide a shared foundation for UKB neuroimaging research into mental health with a focus on anxiety and depression. We compared UKB self-report measures and revealed important timing effects between scan acquisition and separate online acquisition of some mental health measures. To overcome these timing effects, we introduced and validated the Recent Depressive Symptoms (RDS-4) score which we recommend for state-dependent and longitudinal research in the UKB. We furthermore tested univariate and multivariate associations between brain imaging-derived phenotypes (IDPs) and mental health. Our results showed a significant multivariate relationship between IDPs and mental health, which was replicable. Conversely, effect sizes for individual IDPs were small. Test–retest reliability of IDPs was stronger for measures of brain structure than for measures of brain function. Taken together, these results provide benchmarks and guidelines for future UKB research into brain biomarkers of mental health

    Improvements in physical function and pain interference and changes in mental health among patients seeking musculoskeletal care

    Get PDF
    IMPORTANCE: Among patients seeking care for musculoskeletal conditions, there is mixed evidence regarding whether traditional, structure-based care is associated with improvement in patients\u27 mental health. OBJECTIVE: To determine whether improvements in physical function and pain interference are associated with meaningful improvements in anxiety and depression symptoms among patients seeking musculoskeletal care. DESIGN, SETTING, AND PARTICIPANTS: This cohort study included adult patients treated by an orthopedic department of a tertiary care US academic medical center from June 22, 2015, to February 9, 2022. Eligible participants presented between 4 and 6 times during the study period for 1 or more musculoskeletal conditions and completed Patient-Reported Outcomes Measurement Information System (PROMIS) measures as standard care at each visit. EXPOSURE: PROMIS Physical Function and Pain Interference scores. MAIN OUTCOMES AND MEASURES: Linear mixed effects models were used to determine whether improvements in PROMIS Anxiety and PROMIS Depression scores were associated with improved PROMIS Physical Function or Pain Interference scores after controlling for age, gender, race, and PROMIS Depression (for the anxiety model) or PROMIS Anxiety (for the depression model). Clinically meaningful improvement was defined as 3.0 points or more for PROMIS Anxiety and 3.2 points or more for PROMIS Depression. RESULTS: Among 11 236 patients (mean [SD] age, 57 [16] years), 7218 (64.2%) were women; 120 (1.1%) were Asian, 1288 (11.5%) were Black, and 9706 (86.4%) were White. Improvements in physical function (β = -0.14; 95% CI, -0.15 to -0.13; P \u3c .001) and pain interference (β = 0.26; 95% CI, 0.25 to 0.26; P \u3c .001) were each associated with improved anxiety symptoms. To reach a clinically meaningful improvement in anxiety symptoms, an improvement of 21 PROMIS points or more (95% CI, 20-23 points) on Physical Function or 12 points or more (95% CI, 12-12 points) on Pain Interference would be required. Improvements in physical function (β = -0.05; 95% CI, -0.06 to -0.04; P \u3c .001) and pain interference (β = 0.04; 95% CI, 0.04 to 0.05; P \u3c .001) were not associated with meaningfully improved depression symptoms. CONCLUSIONS AND RELEVANCE: In this cohort study, substantial improvements in physical function and pain interference were required for association with any clinically meaningful improvement in anxiety symptoms, and were not associated with any meaningful improvement in depression symptoms. Patients seeking musculoskeletal care clinicians providing treatment cannot assume that addressing physical health will result in improved symptoms of depression or potentially even sufficiently improved symptoms of anxiety

    Hand classification of fMRI ICA noise components

    Get PDF
    We present a practical "how-to" guide to help determine whether single-subject fMRI independent components (ICs) characterise structured noise or not. Manual identification of signal and noise after ICA decomposition is required for efficient data denoising: to train supervised algorithms, to check the results of unsupervised ones or to manually clean the data. In this paper we describe the main spatial and temporal features of ICs and provide general guidelines on how to evaluate these. Examples of signal and noise components are provided from a wide range of datasets (3T data, including examples from the UK Biobank and the Human Connectome Project, and 7T data), together with practical guidelines for their identification. Finally, we discuss how the data quality, data type and preprocessing can influence the characteristics of the ICs and present examples of particularly challenging datasets

    Neuroinflammation in the amygdala is associated with recent depressive symptoms

    Get PDF
    BACKGROUND: Converging evidence suggests that elevated inflammation may contribute to depression. Yet, the link between peripheral inflammation and neuroinflammation in depression is unclear. Here, using data from the UK Biobank, we estimated associations among depression, C-reactive protein (CRP) as a measure of peripheral inflammation, and neuroinflammation as indexed by diffusion basis spectral imaging-based restricted fraction (DBSI-RF). METHODS: DBSI-RF was derived from diffusion-weighted imaging data (N = 11,512) for whole-brain gray matter (global-RF), and regions of interest in the bilateral amygdala (amygdala-RF) and hippocampus (hippocampus-RF), and CRP was estimated from blood (serum) samples. Self-reported recent depression symptoms were measured using a 4-item assessment. Linear regressions were used to estimate associations between CRP and DBSI-RFs with depression while adjusting for the following covariates: age, sex, body mass index, smoking, drinking, and medical conditions. RESULTS: Elevated CRP was associated with higher depression symptoms (β = 0.04, false discovery rate-corrected p \u3c .005) and reduced global-RF (β = -0.03, false discovery rate-corrected p \u3c .001). Higher amygdala-RF was associated with elevated depression-an effect resilient to added covariates and CRP (β = 0.02, false discovery rate-corrected p \u3c .05). Interestingly, this association was stronger in individuals with a lifetime history of depression (β = 0.07, p \u3c .005) than in those without (β = 0.03, p \u3c .05). Associations between global-RF or hippocampus-RF with depression were not significant, and no DBSI-RF indices indirectly linked CRP with depression (i.e., mediation effect). CONCLUSIONS: Peripheral inflammation and DBSI-RF neuroinflammation in the amygdala are independently associated with depression, consistent with animal studies suggesting distinct pathways of peripheral inflammation and neuroinflammation in the pathophysiology of depression and with investigations highlighting the role of the amygdala in stress-induced inflammation and depression

    Stratification of MDD and GAD patients by resting state brain connectivity predicts cognitive bias

    Get PDF
    Patients with Generalized Anxiety Disorder (GAD) and Major Depressive Disorder (MDD) show between-group comorbidity and symptom overlap, and within-group heterogeneity. Resting state functional connectivity might provide an alternate, biologically informed means by which to stratify patients with GAD or MDD. Resting state functional magnetic resonance imaging data were acquired from 23 adults with GAD, 21 adults with MDD, and 27 healthy adult control participants. We investigated whether within- or between-network connectivity indices from five resting state networks predicted scores on continuous measures of depression and anxiety. Successful predictors were used to stratify participants into two new groups. We examined whether this stratification predicted attentional bias towards threat and whether this varied between patients and controls. Depression scores were linked to elevated connectivity within a limbic network including the amygdala, hippocampus, VMPFC and subgenual ACC. Patients with GAD or MDD with high limbic connectivity showed poorer performance on an attention-to-threat task than patients with low limbic connectivity. No parallel effect was observed for control participants, resulting in an interaction of clinical status by resting state group. Our findings provide initial evidence for the external validity of stratification of MDD and GAD patients by functional connectivity markers. This stratification cuts across diagnostic boundaries and might valuably inform future intervention studies. Our findings also highlight that biomarkers of interest can have different cognitive correlates in individuals with versus without clinically significant symptomatology. This might reflect protective influences leading to resilience in some individuals but not others

    Comparison between gradients and parcellations for functional connectivity prediction of behavior

    Get PDF
    Resting-state functional connectivity (RSFC) is widely used to predict behavioral measures. To predict behavioral measures, representing RSFC with parcellations and gradients are the two most popular approaches. Here, we compare parcellation and gradient approaches for RSFC-based prediction of a broad range of behavioral measures in the Human Connectome Project (HCP) and Adolescent Brain Cognitive Development (ABCD) datasets. Among the parcellation approaches, we consider group-average “hard” parcellations (Schaefer et al., 2018), individual-specific “hard” parcellations (Kong et al., 2021a), and an individual-specific “soft” parcellation (spatial independent component analysis with dual regression; Beckmann et al., 2009). For gradient approaches, we consider the well-known principal gradients (Margulies et al., 2016) and the local gradient approach that detects local RSFC changes (Laumann et al., 2015). Across two regression algorithms, individual-specific hard-parcellation performs the best in the HCP dataset, while the principal gradients, spatial independent component analysis and group-average “hard” parcellations exhibit similar performance. On the other hand, principal gradients and all parcellation approaches perform similarly in the ABCD dataset. Across both datasets, local gradients perform the worst. Finally, we find that the principal gradient approach requires at least 40 to 60 gradients to perform as well as parcellation approaches. While most principal gradient studies utilize a single gradient, our results suggest that incorporating higher order gradients can provide significant behaviorally relevant information. Future work will consider the inclusion of additional parcellation and gradient approaches for comparison

    NeuroBridge: a prototype platform for discovery of the long-tail neuroimaging data

    Get PDF
    Introduction Open science initiatives have enabled sharing of large amounts of already collected data. However, significant gaps remain regarding how to find appropriate data, including underutilized data that exist in the long tail of science. We demonstrate the NeuroBridge prototype and its ability to search PubMed Central full-text papers for information relevant to neuroimaging data collected from schizophrenia and addiction studies. Methods The NeuroBridge architecture contained the following components: (1) Extensible ontology for modeling study metadata: subject population, imaging techniques, and relevant behavioral, cognitive, or clinical data. Details are described in the companion paper in this special issue; (2) A natural-language based document processor that leveraged pre-trained deep-learning models on a small-sample document corpus to establish efficient representations for each article as a collection of machine-recognized ontological terms; (3) Integrated search using ontology-driven similarity to query PubMed Central and NeuroQuery, which provides fMRI activation maps along with PubMed source articles. Results The NeuroBridge prototype contains a corpus of 356 papers from 2018 to 2021 describing schizophrenia and addiction neuroimaging studies, of which 186 were annotated with the NeuroBridge ontology. The search portal on the NeuroBridge website https://neurobridges.org/ provides an interactive Query Builder, where the user builds queries by selecting NeuroBridge ontology terms to preserve the ontology tree structure. For each return entry, links to the PubMed abstract as well as to the PMC full-text article, if available, are presented. For each of the returned articles, we provide a list of clinical assessments described in the Section “Methods” of the article. Articles returned from NeuroQuery based on the same search are also presented. Conclusion The NeuroBridge prototype combines ontology-based search with natural-language text-mining approaches to demonstrate that papers relevant to a user’s research question can be identified. The NeuroBridge prototype takes a first step toward identifying potential neuroimaging data described in full-text papers. Toward the overall goal of discovering “enough data of the right kind,” ongoing work includes validating the document processor with a larger corpus, extending the ontology to include detailed imaging data, and extracting information regarding data availability from the returned publications and incorporating XNAT-based neuroimaging databases to enhance data accessibility
    corecore