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Introduction: Open science initiatives have enabled sharing of large amounts of

already collected data. However, significant gaps remain regarding how to find

appropriate data, including underutilized data that exist in the long tail of science.

We demonstrate the NeuroBridge prototype and its ability to search PubMed

Central full-text papers for information relevant to neuroimaging data collected

from schizophrenia and addiction studies.

Methods: The NeuroBridge architecture contained the following components: (1)

Extensible ontology for modeling study metadata: subject population, imaging

techniques, and relevant behavioral, cognitive, or clinical data. Details are

described in the companion paper in this special issue; (2) A natural-language

based document processor that leveraged pre-trained deep-learning models

on a small-sample document corpus to establish efficient representations for

each article as a collection of machine-recognized ontological terms; (3)

Integrated search using ontology-driven similarity to query PubMed Central

and NeuroQuery, which provides fMRI activation maps along with PubMed

source articles.

Results: The NeuroBridge prototype contains a corpus of 356 papers from 2018

to 2021 describing schizophrenia and addiction neuroimaging studies, of which

186 were annotated with the NeuroBridge ontology. The search portal on the

NeuroBridge website https://neurobridges.org/ provides an interactive Query

Builder, where the user builds queries by selecting NeuroBridge ontology terms

to preserve the ontology tree structure. For each return entry, links to the PubMed

abstract as well as to the PMC full-text article, if available, are presented. For each

of the returned articles, we provide a list of clinical assessments described in the

Section “Methods” of the article. Articles returned from NeuroQuery based on the

same search are also presented.
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Conclusion: The NeuroBridge prototype combines ontology-based search with

natural-language text-mining approaches to demonstrate that papers relevant to

a user’s research question can be identified. The NeuroBridge prototype takes

a first step toward identifying potential neuroimaging data described in full-

text papers. Toward the overall goal of discovering “enough data of the right

kind,” ongoing work includes validating the document processor with a larger

corpus, extending the ontology to include detailed imaging data, and extracting

information regarding data availability from the returned publications and

incorporating XNAT-based neuroimaging databases to enhance data accessibility.

KEYWORDS

addiction, schizophrenia, experimental design, MRI, metadata, ontology, text-mining

Introduction

The unprecedented data revolution has generated an enormous
amount of data, including biomedical imaging datasets. In
2022, the NIH funded over 7,000 neuroimaging-related projects,
encompassing virtually every institute (National Institutes of
Health, National Institutes of Health). Over 6,000 currently open
clinical trials rely on imaging as a primary endpoint or other key
dependency1. Much of the present efforts on reproducibility science
are focused on annotation, processing, and to some extent analysis.
The new NIH Data Management and Sharing Policy (National
Institutes of Health, 2023) is encouraging the sharing of data and
has pointed to repositories for depositing data. However, how to
find data, and more importantly, how to find sufficient data that is
appropriate to answering a specific research question, is currently
left to the individual researcher to navigate. The facilitation of
finding sufficient data of the right kind is a critical gap.

Currently, much of the data is not yet “findable.” While
organized, big neuroimaging data is being shared through
mechanisms such as searchable archives (see an example list
of the many different neuroimaging databases that are sharing
data) (Eickhoff et al., 2016), and data are being reported
and deposited with recently established resources such as data
journals (Walters, 2020) and EuropePMC2, an even larger number
of smaller-sized datasets have been collected in day-to-day
research by individual laboratories and reported in peer-reviewed
publications: approximately 9,000 full text papers are available
at Frontiers in Psychology and Frontiers in Neuroscience alone,
and Neurosynth.org contains 10,000 fMRI papers. Many of these
datasets are utilized once and never shared. These underutilized
“gray data” along with the rest of the data that remain in the
unpublished “darkness” form the “long tail of data” (Wallis et al.,
2013; Ferguson et al., 2014). Finding, accessing, and reusing these
data could greatly enhance their value and lead to improved
reproducibility science.

Searching the scientific literature for data is a labor intensive
endeavor. While researchers can search for papers on platforms

1 ClinicalTrials.gov: https://www.clinicaltrials.gov/.

2 Europe PubMed Central: https://europepmc.org/.

such as PubMed Central (PMC) and Google Scholar, culling
through the returned articles to identify which ones may contain
relevant study populations and whether they include references to
datasets is time consuming. One coauthor’s Ph.D student wished
to assess the reliability of automated tracing of the amygdala,
and whether manual-vs-automated differences might account for
disagreements in the literature. Through obtaining data directly
from authors, she was able to definitively demonstrate that
amygdala volumes were not a sensitive measure in the population
she was researching, and that differences in tracing methodology
did not account for the literature disagreements (Jayakar, 2017;
Jayakar et al., 2018, 2020). However, this process took 18 months! A
more efficient process by which researchers can find relevant data
in the literature is needed.

To improve search efficiency, a large body of work has been
done to annotate the research literature (Fox et al., 2005; Turner
and Laird, 2012). PubMed, for example, tags papers with the
Medical Subject Headings (MeSH) terms. In the neuroimaging
community, the Neurosynth project has derived keywords and
result tables from full text of functional MRI papers. The
NeuroQuery platform developed a library of ∼7,500 keywords to
label fMRI activation coordinates in full text papers on psychiatric
studies (Dockes et al., 2020). Many scientific domains, including
neuroscience, extensively adopt ontologies to describe observations
and organize knowledge (Moreau et al., 2008; Widom, 2008;
Sahoo et al., 2019). Using these ontologies to annotate textual
descriptions of datasets is therefore a key step toward effective data
discovery and selection. Natural language processing (NLP) and
machine learning approaches have the potential to automate this
process. For example, the Brainmap Tracker used the Cognitive
Paradigm Ontology to guide text-mining for tagging papers
(Laird et al., 2005; Turner and Laird, 2012; Turner et al., 2013;
Chakrabarti et al., 2014). Traditional machine learning algorithms
often require training on a large number of annotated examples,
where unstructured texts are manually annotated using a complex
ontology. This is a labor-intensive process that requires highly
specialized domain expertise. We have previously developed a
deep-learning classification algorithm that obtained high accuracy
without assuming large-scale training data (Wang et al., 2022),
by exploiting pre-training deep neural language models on rich
semantic knowledge in the ontology.
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In this context, we launched the NeuroBridge project to
facilitate the discovery and reuse of neuroimaging data described
in peer-reviewed publications and searchable databases. It is
important to note that while there are efforts on modeling
provenance metadata during the design and implementation of
studies prior to publication (Keator et al., 2013; Gorgolewski
et al., 2016; Kennedy et al., 2019), the NeuroBridge is focused on
completed studies that are described in papers.

The NeuroBridge project supports the FAIR data principles
(Wilkinson et al., 2016) for improving findability, accessibility,
interoperability and reusability of scientific data in the following
ways. Findability: FAIR recommends that metadata and data should
be easy to find. NeuroBridge enhances the findability of data
through clinical ontology-based indexing for finding presence of
data usage in publications. Accessibility: FAIR recommends that
a user be given information on how data can be accessed once
found. In NeuroBridge we provide the data availability statement
and author contact information that we extract automatically
from publication metadata. Interoperability: FAIR recommends
common vocabulary and use of formal, accessible, shared, and
broadly applicable language for representation of data and
metadata. NeuroBridge provides mappings between metadata
terms used by data providers and published studies to metadata
schemas that conform to standard terms or ontology. Reusability:
FAIR recommends data be richly described with a plurality of
accurate and relevant metadata attributes. NeuroBridge provides
metadata schemas that are annotated with common vocabulary
and ontology. We have made all of our relevant data and tools
freely available3,4 to encourage the neuroscience community to
produce data that can be legally and efficiently utilized by third
party investigators.

Our long-term goal is to bridge the research question with
data and scientific workflow, thereby significantly speeding up the
cycle of hypothesis-based research. In the companion paper in this
special issue, we describe the NeuroBridge ontology (Sahoo et al.,
2023). In this paper, we report the NeuroBridge prototype platform
that focused on neuroimaging studies of schizophrenia and
addiction disorders as application domains. To extract metadata
about study design and data collection from full-text papers, we
leveraged a number of previous efforts on ontology development
and machine-learning based natural-language processing.

The NeuroBridge prototype
architecture

The design of the NeuroBridge architecture (Figure 1) was
guided by our overall goal to find enough data of relevance
to the user, and by the principle of identifying relevance by
metadata that is harmonized by a common ontology. Within this
principle, we first created an extensible NeuroBridge Ontology
that was interoperable with other domain-specific terminological
systems such as the Systematized Nomenclature of Medicine

3 NeuroBridge (Website): https://github.com/NeuroBridge/NeuroBrid
ge1.0.

4 NeuroBridge (Ontology): https://github.com/NeuroBridge/neuro-
ontologies/tree/main/neurobridge.

Clinical Terms (SNOMED CT), the Neuroimaging Data Model
(NIDM) ontology (Maumet et al., 2016), and the RadLex ontology
developed by the Radiological Society of North America. This
ontology was then used to annotate a set of full-text peer-reviewed
papers, which was then used to train a natural-language document
processor to develop a deep neural network model to represent
each paper with the ontological concepts. Finally, a user-friendly
interface that contained an interactive query builder and integrated
search across disparate data sources completed the prototype
architecture.

We first established a document corpus of PMC papers to
develop the NeuroBridge ontology and train our deep neural
network document processor. The corpus contained 356 full-text
articles from 2017 to 2020, available from the National Library of
Medicine (NLM) BioC collection, reporting empirical studies of
schizophrenia and substance-related disorders that have collected
neuroimaging data on human subjects, excluding meta-analysis
and review papers. The NLM BioC collection (Comeau et al., 2019)
is a simple format designed for straightforward text processing, text
mining and information retrieval research, e.g., using plain text or
JSON. Details of queries performed on PMC are shown in Table 1.
Of the 356 articles, 186 were used to annotate with the NeuroBridge
ontology and train our deep neural network document processor,
described below.

The NeuroBridge ontology

Full details of the ontology and its development process
are described in the companion paper in this special issue
(Sahoo et al., 2023). The NeuroBridge ontology was developed
in the metadata framework called the S3 model that classified
provenance metadata related to research studies into the categories
of study instrument, study data, and study method (Sahoo
et al., 2019), which extended the World Wide Web Consortium
(W3C) PROV specification to represent provenance metadata
for the biomedical domain. The NeuroBridge ontology was
developed to be interoperable in annotating the neuroimaging
literature and extensible to model additional study metadata
such as subject recruitment and data collection methods. It
incorporated our previous work on terminologies for data sharing
in schizophrenia (Wang et al., 2016), and extended it to include
metadata terms from the ENIGMA Addiction Project (Cao et al.,
2021). It systematically and comprehensively modeled metadata
information that described neuroscience experiments such as
the number of participants in a diagnostic group, the type of
experiment data collected (neuroimaging, neurophysiology etc.),
and the clinical and cognitive assessment instruments.

The NeuroBridge ontology model included terms for
neuroimaging data types for T1-weighted, task-based or resting-
state functional imaging, a variety of clinical diagnoses such as
neurodevelopmental disorder, mental disorders, and cognitive
disorder. It also included various clinical and cognitive assessment
instruments such as substance use scales, psychopathology scales,
neurocognitive scales and mental health diagnosis scales. The
ontology was integrated into the natural language processing
pipeline and the NeuroBridge query interface, both described
below, to allow use of metadata terms in composing user query
expressions and identify relevant study articles.
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FIGURE 1

The NeuroBridge prototype architecture includes an extensible NeuroBridge ontology along with a set of full-text peer-reviewed papers annotated
with the ontology, a natural-language processing document processor deep neural network model, and a user-friendly interface that contained an
interactive query builder and integrated search across disparate data sources completed the prototype architecture.

The NeuroBridge ontology currently consists of 640 classes
together with 49 properties that link the ontology classes. Using the
ontology, we annotated 186 papers from our document corpus on
the participant types, scanning, clinical and cognitive assessments.
See the companion paper in this special issue for a more thorough
presentation of the ontology and annotations (Sahoo et al., 2023),
including the class hierarchy representing various diagnoses and
assessment scales. The latest version of the NeuroBridge ontology
is available on GitHub (NeuroBridge) (see text footnote 4) and will
be made available on BioPortal soon.

Ontology-based natural language
document processor

The goal of the document processor was to extract from full-
text articles in our corpus any relevant metadata information
regarding study design and data collection as modeled by the
NeuroBridge ontology. A key element of the design was to represent
each full-text article in the corpus as a collection of the ontological
concepts, instead of the original representation as a sequence
of words in the full text. This eliminated the need to generate
synonyms, hypernyms and hyponyms that are common in text-
based search platforms. For the prototype reported here, the sample
size of our corpus of annotated full-text papers was small relative to
the number of ontological concepts (186 vs. 640, respectively, see
above). This small sample size did not lend itself to an end-to-end
deep-learning model that would simultaneously tag and classify text
spans into the ontology terms. Our prior research on low-resource
named entity recognition showed that when the training set was

TABLE 1 The prototype document corpus.

PMC
search

Schizophrenia Substance-
related
disorder

Search string [“functional neuroimaging”
(mh)] [“schizophrenia”
(mh)] NOT
[meta-analysis(pt) OR
review(pt)] NOT
[meta-analysis(ti) or
review(ti)]

[“functional
neuroimaging” (mh)]
[“substance-related
disorders” (mh)] NOT
[meta-analysis(pt)
or review(pt)] NOT
[meta-analysis(ti) or
review(ti)]

Additional PMC
filters applied to
both searches

Free full text; Time In the last 5 years; Subjects: Humans;
language: English

# of returns on
PMC

335 200

# of articles
retrieved from
BioC

196 162

# of articles used
in document
collection

196 + 162–2 = 356 (two articles are common between
the above two sets)

small and entity tokens were sparse, fine-tuning a pre-trained
large language model had a consistent performance advantage over
training simpler models such as conditional random fields or bi-
directional long short-term memory (Wang and Wang, 2022). This
led to the development of a two-stage machine-learning model,
described in detail in Wang et al. (2022) and briefly outlined here.
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Stage 1 of the model was concept recognition, where text spans
in the full text that may mention any ontological concept term were
tagged. This was formulated as a binary sequence tagging task to
determine whether a text span should be recognized as any concept
or not, regardless which concept it is linked to. We employed the
Bidirectional Encoder Representations from Transformers (BERT)
with a conditional random fields (CRF) output layer as the binary
sequence tagging model. BERT is a deep neural network model for
natural language (Devlin et al., 2019) that learns from a corpus of
documents to obtain the contextual representation of a word using
information from all other words in a sentence. This makes BERT
especially powerful in fine-grained natural language processing
tasks (both at a sentence and at the word level) where nuanced
syntactic and semantic understanding is critical.

Then in Stage 2, concept linking, the tagged texts were mapped
to the most relevant concept in the ontology. For each concept,
we constructed a “concept document” by concatenating its textual
labels in the NeuroBridge ontology, its synonyms in the UMLS, and
its associated text spans in the training data. We then calculated the
textual similarity between the text span and the concept document
by using Apache Solr to index all concept documents where a text
span was treated as a free-text query and the BM25 relevance model
(Amati, 2009) was used to rank concepts. The textual similarity
provided a measure of relevance of a text span with respect to a
concept, which was used to train and develop the model. In the case
where Solr returned no result for a given text span, we used fuzzy
string matching (i.e., Jaccard similarity of two sets of letter trigrams)
between the text span and a concept as a fallback strategy to rank
the relevance to the concepts.

For each of the articles in our corpus (except those used for
training), we applied the trained two-stage document processor on
the Sections “Abstract” and “Methods” to create a representation
as a collection of machine-recognized ontological concepts. During
queries performed in the NeuroBridge search portal (described
below), these representations would be used to match against
the query criteria.

Interactive search portal and
integrated query across disparate
sources

Overview

When the user comes to the NeuroBridge search portal website
(see text footnote 1), a typical workflow begins in the query builder
interface with the construction of a query by the user selecting
a series of NeuroBridge ontology terms as search keywords. The
query is then passed to the backend to search across the different
data sources. Returns from each data source are then listed for
further exploration by the user.

Query construction

In the Query Builder window, the user types in parts
of the keyword that they want to query on, and the Query

Builder will present a list of suggested ontology concept terms
based on the spelling of the partial keyword. By default, all
descendants of the selected ontology concept term will be
included and the user can include and exclude individual
descendants. The user can continue to add additional ontology
concept terms to the query. An example query is shown in
Figure 2A, constructed on the ontological concepts of “Schizo-
phrenia,” “FunctionalMagneticResonanceImaging,” “Negative-
SymptomScale,” with all the descendants of these terms
automatically included into the query.

The portal front-end will form the final query by joining
the terms together with Boolean logics of “AND” and “OR,” and
represents it in a JSON format to preserve the ontology tree
structure. A “View Query” option on the Query Builder portal
allows the user to inspect the query syntax before submitting for
execution. Upon user submission, the Boolean-represented query
is then sent to the backend to be matched against the ontology
representations of the full-text articles in the document corpus, as
described above.

Query across disparate sources

For the same query the user constructed, we have also
implemented mediation strategies to search additional data sources.
In the current NeuroBridge prototype, in addition to the PMC
articles corpus, we have incorporated NeuroQuery (Dockes et al.,
2020) as a second data source and are currently working
on incorporating XNAT (Marcus et al., 2007a) data sources.
NeuroQuery is a platform that provides fMRI activation maps
along with PubMed source articles (Dockes et al., 2020). It has a
native search interface for user-input free texts and returns which
terms, PMC publications, and brain regions are related to the query.
The matching within NeuroQuery is based on its library of ∼7,500
native terms and ∼13,000 PMC neuroimaging articles.

We directed the NeuroBridge search to NeuroQuery by
employing ElasticSearch and SapBERT (2023)5 to semantically
match terms in the NeuroBridge ontology to the native
NeuroQuery terms so that terms being queried at NeuroBridge
can be translated to NeuroQuery native terms. The translation
process started by using SapBERT to create a floating-point vector
of dimension 768 for each of NeuroQuery’s native terms. These
vectors represented the position in SapBERT’s feature space of each
of the terms. The vectors were then loaded into an ElasticSearch
index that could be accessed by a Flask based API. To translate a
NeuroBridge term to a NeuroQuery term, the API used SapBERT
to create a corresponding vector for the NeuroBridge term.
Then using the Cosine Similarity capability in ElasticSearch, the
vector representing the NeuroBridge term was compared to the
vector representing each of the NeuroQuery vectors to select the
closest match. As an example, suppose the user has selected the
NeuroBridge term “abstinent.” Searching NeuroQuery using its
native API did not return any data. Searching the ElasticSearch
index for the closest match to abstinent selected the NeuroQuery
term “abstinence.” Using the NeuroQuery native API with this term
returned several matches. The use of ElasticSearch and SapBERT

5 SapBERT, 2023: https://github.com/cambridgeltl/sapbert.
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FIGURE 2

The NeuroBridge portal of an example query of “Schizophrenia” AND “FunctionalMagneticResonanceImaging” AND “NegativeSymptomScale.”
(A) Query builder interface showing query construction on the ontology concepts that automatically included all descendants. (B) Returns from
PubMed Central with links to full-text articles. (C) Returns from NeuroQuery with links to PubMed abstracts. (D) User is directed to the NeuroQuery
portal for direct interaction.

enabled searching the NeuroQuery API using its native term
set while still enabling the user to search using the NeuroBridge
ontology.

Return exploration

In the Results panel, returns of the query from each data
source are presented to the user in its own tab. For returns
from the PMC article corpus, the returns are sorted by relevance
as computed above. Figure 2B shows that the query on the
terms “Schizophrenia,” “Functional Magnetic Resonance Imaging,”
“NegativeSymptomScale,” and all their descendants resulted in a
return of 23 PMC articles from the NeuroBridge corpus. For each
return entry, links to the PubMed abstract as well as to the PMC
full-text article, if available, are presented.

The same query resulted in a return of 100 articles from
NeuroQuery (Figure 2C) (note: NeuroQuery by default returns
100 articles ranked by relevance from their corpus of ∼13,000
articles). A link to the NeuroQuery portal is also provided for
users who are interested in interacting directly with NeuroQuery
(Figure 2D).

We experimented with additional capabilities on the returned
articles for providing useful information to the user. One kind of
useful information is the set of clinical, behavioral and cognitive
assessments that a study may have used. We first extracted a list
of >4,400 names of common assessment instruments from the
National Institute of Mental Health Data Archive (NDA). NDA is
an informatics platform that supports data sharing across all mental
health and other research communities. The list of assessment

FIGURE 3

One of the more than 4,400 common assessment instruments from
the National Institute of Mental Health Data Archive (NDA), the
assessment “Brief Psychiatric Rating Scale,” in JSON format.

instruments thus spans across all mental health conditions6. The
extracted list was in JSON format, where each assessment has a
unique “title” (e.g., “Brief Psychiatric Rating Scale”) and a unique
“shortName” (e.g., “bprs01”). See Figure 3 for an example entry.
We used the Apache Solr-based method we employed in the
Document Processor (see previous section) to compute textual
similarities between the assessment “title” and the texts in the
Section “Methods” of the paper. Matched items were collated for
each returned article and presented to the user. For example, for the
returned article (PMCID PMC6177285) (Viviano et al., 2018), the
assessments included “Brief Psychiatric Rating Scale,” “Cumulative

6 Nimh Data Archive [NDA]: https://nda.nih.gov/general-query.
html?q=query=data-structure%20%7Eand%7E%20dataTypes=Clinical%
20Assessments%20%7Eand%7E%20orderBy=shortName%20%7Eand%7E%
20orderDirection=Ascending%20%7Eand%7E%20resultsView=table-view.
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FIGURE 4

The NeuroBridge portal of returns on the example query in Figure 2, showing a list of clinical assessments described in the full-text article.

Illness Rating Scale,” “Penn Emotion Recognition Task,” and “Social
Functioning Scale” (Figure 4).

As another example, we built a query using concepts
“CannabisAbuse,” “StructuralImaging,” “NeurocognitiveTest” and
their descendants (Figure 5A). Figures 5B–D show the returned
PMC articles from the NeuroBridge corpus and results from
NeuroQuery.

Power of ontology-based search

To demonstrate the power of ontology-based search, we
compared query results of “Schizophrenia,” “Resting-State
Imaging,” and “Young Mania Rating Scale” between NeuroBridge
and a direct search on PMC. On the NeuroBridge search portal,
two articles were returned: Lewandowski et al. (2019) “Functional
Connectivity in Distinct Cognitive Subtypes in Psychosis”
(PMC6378132) and Karcher et al. (2019) “Functional Connectivity
of the Striatum in Schizophrenia and Psychotic Bipolar Disorder”
(PMC6842092) (Figure 6). In Lewandowski et al. (2019), the
Sections “Methods” included the terms “schizophrenia,” “Young
Mania Rating Scale (YMRS),” and “resting-state functional
scans” (Figure 7A). In Karcher et al. (2019), the Sections
“Methods” included the terms “schizophrenia,” “Young Mania
Rating Scale (YMRS),” and “resting-state fMRI” (Figure 7B).
In comparison, the direct search on the PMC portal failed to
return any entries. Additional synonyms such as “Resting-State
fMRI” or “Resting-State functional” resulted in returns from
the PMC. While the returns included the above articles, they
also included many false positives. For example, the article
by Gallucci et al. (2022) “Longer illness duration is associated

with greater individual variability in functional brain activity
in Schizophrenia, but not bipolar disorder” (PMC9723315)
included the terms “schizophrenia” and “Young Mania Rating
Scale (YMRS)” in the Section “Methods,” the study did not
utilize resting-state fMRI - subjects performed the N-back fMRI
only.

Discussion

In this paper we describe the NeuroBridge: a project that
takes a first step toward the discovery of gray neuroimaging
data for reuse. The term “gray data” refers to data that has
been gathered and used for analysis but is not publicly available.
Reuse of these data is economic (i.e., compared with the large
amount of funding required to collect new data) and can enhance
reproducibility research (e.g., by facilitation of replication as well
mega-analysis of aggregated data). Traditionally, finding data has
been done mainly through professional networking and manually
searching the literature7. However, much of the data mentioned
in publications has not been shared yet through data links (such
as DOI) or described in any searchable databases. Few resources
currently exist that can help researchers find the right kind of data
described in publications that are appropriate for their research
questions.

Recent efforts have begun to facilitate these searches. For
example, the field of life sciences requires papers to be deposited
in domain repositories and uses DOIs to help to make data

7 Wageningen University & Research: https://www.wur.nl/en/Library/
Researchers/Finding-sources/Finding-research-data.htm.
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FIGURE 5

An example query of “CannabisAbuse” AND “StructuralImaging” AND “NeurocognitiveTest.” (A) Query builder interface showing query construction
on the ontology concepts that automatically included all descendants. (B) Returns from PubMed Central with links to full-text articles. (C) Returns
from NeuroQuery with links to PubMed abstracts. (D) User is directed to the NeuroQuery portal for direct interaction.

search easier than before. Data journals publish peer-reviewed
documentation of data and provide repositories for the data
(Walters, 2020). The EuropePMC platform (see text footnote 2)
provides links to data related to publications, but only data that has
a citation or has been uploaded to one of the known 40 biological
databases. Despite progress on improving data sharing and data
curation, a wide gap exists in finding such data of interest for a user.
Many of the legacy articles do not have explicit data citations and
there is no standard in which articles detail the data gathering and
data analysis operations. Finding whether there are any references
to data of interest in these articles is a time-consuming manual
process. Currently, finding data described in publications involves
manually searching the literature, identifying the returned articles
that are closely related to a research topic, and checking if the
datasets described in the articles are appropriate and if the articles
include references to the datasets.

The NeuroBridge prototype platform described in this paper
aims to ease the burden for the user and takes a first step toward
the discovery of gray neuroimaging data for reuse. NeuroBridge is
powered by a machine learning system that is trained to identify
clinical neuroscience metadata terms, including diagnosis, MRI
scan types, and clinical assessments in a subset of articles that
are accessible through PubMed Central. The current prototype
is trained with an ontology in the domains of schizophrenia
and substance-use disorders along with the clinical terms to
facilitate discovery of relevant neuroimaging data described in
peer-reviewed full-text journal papers. In the prototype platform,
the user can perform a keyword-based search related to their
research question, examine the returned papers for types of
clinical assessment data, and pursue data access either via the
data availability information or author contacts, both of which are
provided in the NeuroBridge search returns.

Related work

The long-term goal of the NeuroBridge project is to provide
researchers who are searching for neuroimaging data for a specific
project (e.g., meta or mega analysis of a specific neuroimaging
type in a specific clinical domain) with sufficient data of the right
kind. Toward this goal, the NeuroBridge prototype reported here
builds upon a number of previous and ongoing efforts on building
ontologies of study design and text mining.

To discover studies that may contain relevant data for the
user, we rely on the provenance metadata that can model study
population, design and data collection. Extensive research on
provenance metadata collection, storage, and querying has led
to the emergence of relational databases, scientific workflow
systems, sensor networks, and Semantic Web applications (Moreau
et al., 2008; Widom, 2008; Sahoo et al., 2019). The biomedical
research community has developed ontologies to model metadata
information associated with clinical trials such as eligibility criteria
(Tu et al., 2011; Sim et al., 2014). In the neuroscience research
community, several recent initiatives have made significant
progress toward identifying metadata information that can
be used to describe the context of studies. These initiatives
include the Neuroimaging Data Model (NIDM) (Keator et al.,
2013), Reproducible Neuroimaging Computation (ReproNim)
(Kennedy et al., 2019), and Brain Imaging Data Structure (BIDS)
(Gorgolewski et al., 2016). These efforts, however, are focused on
prospective studies on modeling provenance metadata prior to
publication, while the goal of the NeuroBridge modeling approach
is to help locate completed studies that are described in papers.

Many semantic search systems index unstructured content
(usually text) using concepts or terms in a target ontology and allow
users to query the content using these terms. The most prominent
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FIGURE 6

The power of ontology-based search, as demonstrated by a query of “Schizophrenia” AND “Resting-State Imaging” AND “Young Mania Rating Scale”:
On NeuroBridge, two articles were returned.

FIGURE 7

The power of ontology-based search, continued, as demonstrated by the query shown in Figure 6: Relevant text snippets in panel
(A) Lewandowski et al. (2019) and (B) Karcher et al. (2019). In comparison, the direct search on the PMC portal failed to return any entries.
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system is PubMed, which indexes the biomedical literature using
terms in Medical Subject Headings (MeSH) and allows users to
use MeSH terms in their search queries. The MeSH terms are
currently automatically assigned to each PubMed paper using the
MTI system8,9, with a selected subset of papers reviewed by human
indexers for quality control. Another system is LitCovid, which
annotates and searches COVID-19-related research articles with
medical terms such as genes, diseases, and chemical names (Chen
et al., 2021). Other search engine prototypes such as SemEHR (Wu
et al., 2018) and Thalia (Soto et al., 2019) assign terms in the Unified
Medical Language System (UMLS) to documents and use these
terms as search facets. The radiology image search engine prototype
GoldMiner (Kahn and Thao, 2007) assigns terms in Systematized
Nomenclature of Medicine Clinical Terms (SNOMED CT) and
MeSH terms to image documents to facilitate image search. A key
advantage of these systems compared to keyword-based search
engines is that they allow users to directly use ontological concepts
to express specific information needs that are otherwise challenging
to precisely express through keywords.

A significant amount of research efforts has been dedicated
to extracting semantic concepts from unstructured text. The
problem is referred to as semantic indexing when the extracted
concepts are used to represent texts in an information retrieval
system (Reinanda et al., 2020). The problem is usually formulated
as a natural language processing task, such as named entity
recognition (Li et al., 2022), entity linking (Shen et al., 2015),
or multi-label text classification (Mao and Lu, 2017). To solve
these tasks, machine learning techniques are often employed.
A machine learning system learns from a set of articles with
human-assigned terms as training examples and generates a model
that generalizes the term assignment procedure from the training
articles to new unlabeled articles. Neural language models such
as BERT (Devlin et al., 2019) can often deliver state-of-the-
art performance on these tasks. These models learn rich prior
knowledge from large-scale unlabeled text in their pre-training
stage, which makes them easily adaptable to specific tasks by fine-
tuning on a relatively small training dataset. A recent platform
Elicit10 uses Generative Pre-trained Transformer (GPT) to find
papers related to a research question based on semantic similarity.
For NeuroBridge, the ability to quickly learn from a small training
dataset is important since it is expensive and time-consuming to
curate even a moderate amount of biomedical research articles
with concepts in a complex ontology. We have previously
developed a deep-learning classification algorithm without large-
scale training data (Wang et al., 2022). This was achieved by
exploiting BERT that had been pre-trained on large unannotated
text corpus and further fine-tuning it on annotated data that
encoded rich semantic knowledge in the ontology. The technique
could generalize to a wide range of biomedical text mining
scenarios where the target ontological structure is complex but
constructing large training data sets is too expensive and time-
consuming.

8 National Library of Medicine (NLM Medical Text Indexer): https://lhncbc.
nlm.nih.gov/ii/tools/MTI.html.

9 National Library of Medicine (Automated Indexing FAQs): https://
support.nlm.nih.gov/knowledgebase/article/KA-05326/en-us.

10 Elicit: https://elicit.org/.

Currently, a researcher can pursue the following ways to find
data for their research question: utilize their professional network
and institutional resources such as data search engines available
at institutional libraries (e.g., University of Bath, 2023), search
known data repositories such as ones listed in Eickhoff et al. (2016),
search indices of datasets such as DataCite’s Metadata Search11. The
researcher can also search the literature. A number of journals in
the field of biology, medicine and health sciences such as Scientific
Data, Journal of Open Psychology Data, and Open Health Data
are dedicated to the documentation and access of data created
through research (Walters, 2020). While an increasing number of
researchers are documenting their newly collected data in data
journals, valuable, legacy data remain hidden in the literature.
However, searches for data in the literature are performed by
the researcher searching on literature databases such as PubMed
Central, Open Science Framework then reading through each
paper. There appears to be no current effort of systematically aiding
this process. The abovementioned Elicit platform (see text footnote
10) offers advanced features such as extracting the number of
participants and detailed study designs (e.g., case-control design,
use of fMRI). To our knowledge, the NeuroBridge project is the
first of its kind that is aimed at searching for relevant neuroimaging
data described in peer-reviewed full-text papers.

Conclusion and future work

The NeuroBridge prototype we presented here uses an
ontology-based approach to facilitate the search for relevant
peer-reviewed journal papers. While limitations exist, such as
the small sample size of our training and testing corpus, it
nevertheless takes an important first step toward identifying
potential neuroimaging data described in full-text papers that are
relevant to a particular user’s research interests. Work is ongoing
to validate the document processor with a larger corpus, extend
the ontology to include detailed imaging data, extract information
regarding data availability from the returned publications to
enhance data accessibility (FAIR), and measure semantic distances
between studies based on assessment information to help identify
relevance of studies to the user (Lander et al., 2019). Future
work also involves extending the ontology and document corpus
to include additional clinical domains (e.g., psychosis spectrum,
dementia). These extensions will require similarly significant
human effort including manually labeling a training set of papers
with the ontology terms and careful review and curation of this
work. See the companion paper in this issue for more detail of
the labeling methods (Sahoo et al., 2023). As the system grows, the
current iteration of the system supports this human labeling process
by providing draft labels, and the entity-recognition, entity-linking,
2-stage natural language model will be retrained to complete the
extension.

There is an increasing availability of multi-modal datasets
in neuroscience research, especially as a result of the National
Institutes of Health (NIH) Brain Research Through Advancing
Innovative Neurotechnologies (BRAIN) initiative. NIH has
developed large-scale data repositories such as the National

11 DataCite: https://commons.datacite.org/.
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Institute of Mental Health (NIMH) Data Archive (NDA) that
contains datasets from structural and functional MRI, clinical
phenotypes, and genomics. Eickhoff et al. (2016) described
>40 neuroimaging data repositories across multiple clinical
domains. A need exists to develop a metadata-based search and
discovery platform on similar search criteria. Work is ongoing
at the NeuroBridge project to incorporate XNAT-based (Marcus
et al., 2007a) neuroimaging databases into our search. XNAT is
a web-based software platform designed to facilitate common
management and productivity tasks for imaging and associated
data. It has been broadly adopted across domains of neuroscience,
cardiology, cancer, and ophthalmology, supporting a wide range
of many high impact data sharing initiatives, including OASIS
(Marcus et al., 2007b, 2010), Dementia Platform UK, Human
Connectome Project (Hodge et al., 2016), UK Biobank (Miller
et al., 2016), NITRC Image Repository (Kennedy et al., 2015),
and SchizConnect (Wang et al., 2016). These resources offer
comprehensive data from deep phenotyping of subjects, including
multiple imaging modalities and clinical, cognitive, behavior, and
genomic data. As the number of datasets rapidly grows, often the
problem is not finding datasets, but selecting enough data of the
right kind from a large corpus of possible datasets.

Our long-term goal is to discover “enough data of the
right kind” by providing a user-friendly portal for automatically
searching multiple types of sources and identifying relevant
datasets. We envision a scenario where a graduate student or a
postdoctoral fellow from a small institution can use NeuroBridge to
discover data for testing specific hypotheses. For example, she may
have read an interesting paper on how changes in brain networks
are modulated by cognitive demand but the effects are different
by sex. She would like to design a study to test the hypothesis or
replicate the paper’s findings. However, her lab does not have the
resources or budget for MR scanning or subject recruitment, and
she can find only a very limited amount of data fitting her research
needs in public databases. The student would then need to search
through the literature to find data that are similar to the original
study. It would take her an inordinate amount of time to comb
through the details described in papers and decide whether they
have the required data.

Additional future work of the NeuroBridge project includes:
extracting detailed information on details of the study such as
study design, sample demographic information as well as author
contacts and data availability described in research papers, and
identifying the location and links to such data if shared (through
collaboration with platforms such as Brainlife (Avesani et al.,
2019)12 where shared data are associated with publications. In
the not too distant future, researchers like this student would
interact with the NeuroBridges.org and its APIs, describe a study,
craft their hypothesis, and in a few steps discover how many
studies and datasets contain subjects and data that can be used to
answer their research question. Our platform will become a key
component of the data sharing ecosystem that provides researchers
with sustainable means of aggregating data–from discovery, to
access and harmonization – that are directly relevant to their
hypothesis, and compute on the data to test their hypotheses. It
will enable more small-market scientists to do large-scale research

12 https://brainlife.io/

and thus increase the findability, accessibility, and reusability of
scientific data to a greater number of researchers. We believe
our approach can become the prototype in other domains for
bridging from the research question, to data, to scientific workflow,
thereby significantly speeding up the cycle of hypothesis-based
research.
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