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Archival Report

Neuroinflammation in the Amygdala Is
Associated With Recent Depressive Symptoms
Wei Zhang, Jerrel Rutlin, Sarah A. Eisenstein, Yong Wang, Deanna M. Barch, Tamara Hershey,
Ryan Bogdan, and Janine D. Bijsterbosch

ABSTARCT
BACKGROUND: Converging evidence suggests that elevated inflammation may contribute to depression. Yet, the link
between peripheral inflammation and neuroinflammation in depression is unclear. Here, using data from the UK Bio-
bank, we estimated associations among depression, C-reactive protein (CRP) as a measure of peripheral inflammation,
and neuroinflammation as indexed by diffusion basis spectral imaging–based restricted fraction (DBSI-RF).
METHODS: DBSI-RF was derived from diffusion-weighted imaging data (N = 11,512) for whole-brain gray matter
(global-RF), and regions of interest in the bilateral amygdala (amygdala-RF) and hippocampus (hippocampus-RF),
and CRP was estimated from blood (serum) samples. Self-reported recent depression symptoms were measured
using a 4-item assessment. Linear regressions were used to estimate associations between CRP and DBSI-RFs
with depression while adjusting for the following covariates: age, sex, body mass index, smoking, drinking, and
medical conditions.
RESULTS: Elevated CRP was associated with higher depression symptoms (b = 0.04, false discovery rate–corrected
p , .005) and reduced global-RF (b = 20.03, false discovery rate–corrected p , .001). Higher amygdala-RF was
associated with elevated depression—an effect resilient to added covariates and CRP (b = 0.02, false discovery
rate–corrected p , .05). Interestingly, this association was stronger in individuals with a lifetime history of
depression (b = 0.07, p , .005) than in those without (b = 0.03, p , .05). Associations between global-RF or
hippocampus-RF with depression were not significant, and no DBSI-RF indices indirectly linked CRP with
depression (i.e., mediation effect).
CONCLUSIONS: Peripheral inflammation and DBSI-RF neuroinflammation in the amygdala are independently
associated with depression, consistent with animal studies suggesting distinct pathways of peripheral
inflammation and neuroinflammation in the pathophysiology of depression and with investigations highlighting the
role of the amygdala in stress-induced inflammation and depression.

https://doi.org/10.1016/j.bpsc.2023.04.011

Major depressive disorder (MDD) is a worldwide health issue
with profound emotional, cognitive, and economic conse-
quences (1,2). Building upon meta-analytic studies that
elevated inflammation is associated with depression (3,4),
convergent evidence supports the theory that inflammation is a
potential etiological factor contributing to the development of
depression (5–14). For example, immunological challenges
(e.g., influenza vaccine in humans, lipopolysaccharide
administration in nonhuman animals, interferon treatment in
both) induce depressive symptoms (15,16), whereas anti-
inflammatory treatment reduces depressive symptoms
(17–19). Furthermore, inflammation is prospectively associated
with future depression, even when considering depression at
baseline (4,13), and baseline depression has been prospec-
tively associated with future elevations in inflammation (20),
suggestive of a bidirectional relationship that may contribute to
the widespread chronicity and recurrence among individuals
with depression (3). Although a multitude of mechanisms may
contribute to the relationship between peripheral inflammation

and depression, the putative depressogenic effects of inflam-
mation are often attributed to neuroinflammation (21). How-
ever, there are limited studies of neuroinflammation in humans,
and the available evidence is mixed due to small sample sizes
in positron emission tomography studies on depression
(22–24). While studies of microglial activity using translocator
protein will be informative (25), increasing evidence suggests
that biological correlates of complex behavioral phenotypes
such as depression are characterized by small effects (26),
highlighting the need to extend neuroinflammatory research into
larger datasets. Here, we leverage the large-scale UK Biobank
(UKB) dataset (analytic n = 11,501) to examine the relationship
between neuroinflammation index and depressive symptoms.

Although neuroinflammation cannot be directly measured in
humans in vivo, currently available neuroimaging methods
including positron emission tomography, single-photon emis-
sion computed tomography, and magnetic resonance imaging
(MRI) have been used for indirect assessment. Recent evi-
dence from positron emission tomography and functional MRI
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techniques indicates that putative neuroinflammation in
depression might be most relevant for subcortical regions that
subserve reward, motivation, and emotion processes. For
example, increased plasma C-reactive protein (CRP) concen-
tration was associated with decreased functional connectivity
between the amygdala and ventromedial prefrontal cortex in
patients with depression comorbid with anxiety disorder rela-
tive to healthy control participants (27), and depressive
symptom severity was correlated with significant increases in
translocator protein total density in the hippocampus in pa-
tients compared with healthy control participants (28). Inter-
estingly, alterations in structure and function of the
hippocampus and amygdala are also the most prominent
neuroimaging markers for major depression disorder (29–32).
These 2 subcortical regions are involved in a wide range of
cognitive and emotional processes including emotion regula-
tion, memory, and stress, and impairment in these functions
are often evident in individuals with depression (33–35). It re-
mains understudied, however, whether inflammation in these
regions may contribute to depressive symptom severity and
whether disruptions in these regions may potentially mediate
the impact of peripheral inflammatory response on depression
symptomatology. In this study, we used diffusion basis spec-
trum imaging (DBSI), a novel noninvasive technique, to esti-
mate putative neuroinflammation in these regions of interest
from diffusion-weighted imaging (DWI) data.

The DBSI approach is an extension of standard diffusion
tensor imaging (DTI) that models the entire DWI signal as a linear
combination of multiple anisotropic diffusion tensors and a
spectrum of isotropic diffusion components (36,37). In compar-
ison to DTI that describes water movement parallel and
perpendicular to axon tracts, the DBSI approach has the
advantage to improve specificity and sensitivity of diffusion
properties by resolving multiple-tensor water diffusion resulting
from axon injury, demyelination, and inflammation (36). In
particular, DBSI-based restricted fraction (DBSI-RF), the metric
of interest in this study, provides a putative indicator of
neuroinflammation-related cellularity (i.e., the state of having
cells), where higher values indicate increased immune cell infil-
tration relative to lower values (36). DBSI-RF has shown robust
correlations with cell nuclei counts in brain tissues in a mouse
model of autoimmune encephalomyelitis, with stain-quantitated
cellularity from postmortem human central nervous system tis-
sues and has been found to be greater in individuals with
inflammation-related diseases such as multiple sclerosis,
obesity, HIV, and Alzheimer’s disease than in control participants
(38–42). These studies suggest that DBSI-RF can be used as a
proxy measure for inflammation-related cellularity in the brain.

For this study, our goal was to assess putative
inflammation–related cellularity (i.e., DBSI-RF), specifically in
the hippocampus, amygdala, and whole-brain gray matter in
relation to depression. We further explored whether putative
neuroinflammation mediates the association between periph-
eral inflammation and depression.

METHODS AND MATERIALS

Participants

The UKB is a large-scale study (N . 500,000 participants)
designed to examine the genetic, environmental, biological,

and behavioral correlates of broad-spectrum health outcomes
and related phenotypes (43). For the present study, we
considered data from 16,182 participants who completed the
baseline session (i.e., the first assessment center visit between
2006 and 2010), initial neuroimaging acquisition (i.e., the third
assessment center visit from 2014 and 2019), and a web-
based assessment session (2016–2017) of the UKB study.

Data were excluded for the following reasons: 1) mismatch
between self-reported and genetic sex (n = 130), 2) missing
data on a variable included in this study (n = 1834), 3) marked
elevation of CRP levels (i.e., above 10 g/L; n = 398) that may
reflect acute infection, injury, or disease (44), and 4) diseases
associated with systemic inflammation (e.g., known inflam-
matory disease, autoimmune disease, HIV, hepatitis B or C; n =
2319). Thus, our final analytic sample consisted of 11,501
participants (Table 1). This study was conducted under the
UKB Application ID 47267.

In a subset of sample for our secondary analysis on lifetime
MDD phenotype, data of participants who met lifetime MDD
criterion were excluded if they had reported other mood dis-
orders (e.g., bipolar, schizophrenia) or were on treatment or
medication for antipsychotics, whereas data of participants
who did not meet lifetime MDD criterion were excluded if they
had a history of depression or any mental problems, or on
antidepressants (see detailed exclusion criterion in Table S2).
The resulting sample had 6960 participants, including 1138
participants with lifetime MDD (Table 1).

Depression

The primary measure of depression used in our study was the
total score of recent depressive symptoms (RDSs), which was
completed on the same day as the neuroimaging session. This
score was a sum of 4 items (scored on a 1–4 scale where 1 =
not at all, 4 = nearly every day) assessing the presence of the
following self-reported depressive symptoms over the past 2
weeks: 1) depressed mood, 2) unenthusiasm/disinterest, 3)
tenseness/restlessness, and 4) tiredness/lethargy. The result-
ing sum score ranged between 4 and 16, where higher scores
indicate more frequent and severe depressive symptoms. The
RDS score has been previously validated against several
commonly used depression scales, including the 9-item Pa-
tient Health Questionnaire (45). Variable ID numbers of these
items in the UKB Data Showcase are summarized in Table S1.

In secondary analyses, we focused on a subset of partici-
pants of lifetime MDD phenotype (46). Lifetime MDD is defined
based on the short form of the Composite International Diag-
nostic Interview (47) that was administered as part of the online
mental health questionnaire (46). Briefly, participants were
asked to identify their experiences regarding 2 core depression
symptoms: 1) depressive mood and 2) loss of interest, for a
period of 2 or more weeks. If “Yes” was the response to any of
these questions, participants continued to indicate the lifetime
number of depressive symptoms and their experiences on the
other DSM-IV MDD symptoms during the worst episode: 3)
feelings of worthlessness, 4) tiredness, 5) difficulty concen-
trating, 6) suicidal thoughts, 7) changes in sleeping pattern,
and 8) changes in weight. This provides a 0 to 8 sum score of
depression symptoms over 8 symptom questions, where
higher scores indicate greater endorsement of depression
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symptoms. Participants were also asked to indicate the fre-
quency and duration of the core symptoms, as well as their
psychological impairment (i.e., whether they interfere with their
roles, life, and activities). An individual participant is considered
to have lifetime MDD when their sum score $ 5 and experi-
enced symptoms “almost every day” or “every day,” with a
duration of “most of the day” or “all day,” and symptoms
impaired psychosocial functioning “somewhat” or “a lot” (46).
Following previous studies (48,49), we further applied exclu-
sion criterion to ensure phenotype specificity to depression
(e.g., excluding participants reporting bipolar disorder or
schizophrenia). Details are summarized in Table S2. As shown
in Table 1, the mean depression symptom scores in individuals
with lifetime MDD were significantly higher, whereas that in
individuals without lifetime MDD were lower compared with the
full study sample. Of note, a small subset of participants (n =
2191) completed the online mental health questionnaire up to
1.8 years after the neuroimaging session.

Inflammation Indices

Peripheral inflammation was indexed by baseline serum CRP
level (mg/L), which was measured by an immunoturbidimetric
high-sensitivity analysis on a Beckman Coulter AU5800 (see
biomarker assay quality procedures for more details: https://
biobank.ctsu.ox.ac.uk/showcase/showcase/docs/biomarker_
issues.pdf). The blood sample used for CRP assessment was
collected at the baseline visit, which was on average 7.6 years
prior to the acquisition of DWI data and depression assess-
ment in this study sample.

We also generated indices of neuroinflammation using DWI
data (see details below in DBSI and Neuroinflammation Index).

Imaging Acquisition and Processing

This study made use of DWI and T1-weighted structural MRI
data (i.e., FreeSurfer-based segmentation) that were pro-
cessed and generated by an image-processing pipeline
developed and run on behalf of UKB (50). Specifically, DWI
data (2 3 2 3 2 mm3) were acquired using a multishell

approach with 2 b values (b1 = 1000 s/mm2; b2 = 2000 s/mm2).
For each diffusion-weighted shell, 50 diffusion-encoding di-
rections were acquired. Preprocessing of DWI data included
eddy currents and head motion corrections, outlier slice
correction, and gradient distortion correction (50).

High-resolution T1-weighted structural MRI data (1 3 1 3

1 mm3) was acquired with an in-plane acceleration
sequence. The preprocessed T1-weighted images (i.e., after
removing the skull and correcting for gradient distortion)
were further processed with FreeSurfer, and the outputs
(e.g., images, surface files, and summary outputs) were
made available for download from the UKB Data Showcase.
Details of the acquisition protocols, image processing
pipeline, and derived imaging measures can be found in the
UKB Imaging Documentation (https://www.fmrib.ox.ac.uk/
ukbiobank/) and Miller et al. (51).

DBSI and Neuroinflammation Index

To index inflammation in the brain (neuroinflammation), we
derived RF from DWI data using DBSI (36,39,41).

We focused on the hippocampus and amygdala, our regions
of interest, and obtained subject-specific segmentation images
of these 2 subcortical regions from the UKB FreeSurfer outputs,
which were generated by FreeSurfer’s aseg tool (52). We then
extracted mean DBSI-RF from these regions of interest, sepa-
rately for the left and right hemispheres, using the FreeSurfer
segments as masks and FSL function fslmeants (53). The
extracted RF values were then averaged within each ROI
because they showed moderate-to-high left-right correlations (rs
. 0.68). Additionally, we derived a global index of neuro-
inflammation in whole-brain gray matter (i.e., global-RF), using
the FSL FAST-based gray matter segmentation (54) as the mask.
The resulting RFs of the whole-brain gray matter, hippocampus,
and amygdala were included in separate statistical analyses.

Covariates

Age, sex, body mass index, ethnicity, smoking, and drinking
statuses were included as covariates to adjust for potential

Table 1. Characteristics of Study Sample

Full

Lifetime MDD

Yes No All

Sample Size

Female, n (%) 6097 (53%) 1138 (67%) 2368 (45%) 3506 (50%)

Total, N 11,501 1693 5267 6960

Age, Years 62.41 (7.41) 61.17 (7.15) 63.05 (7.43) 62.59 (7.41)

Race, White, % 98.37% 99.17% 97.80% 98.13%

Body Mass Index 24.81 (2.74) 24.75 (2.81) 24.82 (2.70) 24.80 (2.73)

Serum C-Reactive Protein, mg/L 1.42 (1.46) 1.43 (1.45) 1.40 (1.44) 1.41 (1.44)

RDSs 5.15 (1.68) 5.68a (2.02) 4.73a (1.33) 4.97 (1.58)

DBSI-RF

Gray matter 0.071 (0.011) 0.071 (0.011) 0.071 (0.011) 0.071 (0.011)

Hippocampus 0.037 (0.005) 0.037 (0.005) 0.037 (0.005) 0.037 (0.005)

Amygdala 0.028 (0.006) 0.028 (0.005) 0.028 (0.006) 0.028 (0.006)

Values are presented as mean (SD) except where indicated.
DBSI-RF, diffusion basis spectral imaging–based restricted fraction; MDD, major depressive disorder; RDS, recent depressive symptoms.
aIndicates significant differences (p , .00001) in RDSs between the phenotype and the full sample such that individuals with lifetime MDD had a

higher RDS score and individuals without lifetime MDD had a lower RDS score than that of the full study sample.
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confounds. Additionally, we included a composite measure to
index medical conditions that combined information about
cancer diseases, noncancer diseases, medical operations, and
medications. Covariate measurements and their variable IDs in
the UKB database are described in Table S1.

Statistical Analysis

To investigate whether DBSI-RF relates to depression symp-
toms, we conducted a series of linear regression analyses.
Whenever significant associations were observed between
DBSI-RF, depression, and CRP, we conducted planned
mediation analyses to estimate whether DBSI-RF may indi-
rectly link CRP to depression, using the PROCESS macro
modeling tool that is implemented in R [i.e., R package bruceR
(55)]. These analyses were performed separately for whole-
brain gray matter, hippocampus, and amygdala, with adjust-
ment for covariates (i.e., adjusted for both dependent and
mediator variables). In case of significant effects of neuro-
inflammation indices, we further tested in the follow-up
regression analyses to determine whether their effects were
independent of CRP concentration. In mediation analyses,
CRP concentration and RDSs were included as independent
and dependent variables, respectively. We conducted these
analyses for the full study sample, as well as for the selected
subset of participants based on lifetime MDD definition. The
regression models for lifetime MDD participants further
included an interaction term of lifetime MDD status (“Yes” vs.
“No”) with DBSI-RFs. To ensure robust statistical results, we
conducted diagnostic analyses to test multicollinearity of in-
dependent variables in each regression model that returned
significant effects of interest. Specifically, we calculated a
generalized variance inflation factor score for each variable
under investigation and investigated whether any observed
effects might be biased due to high generalized variance
inflation factor values (i.e., high collinearity).

False discovery rate (FDR) corrections were applied to all
regression analyses to account for multiple testing.

RESULTS

Study Sample Demographics

Participants were predominately White and middle-old aged
(mean age = 62.41 years), and about half were female. On
average, participants scored 5.15 (SD = 1.68) on RDS ques-
tions, indicating relatively low levels of depression. Lifetime
MDD participants showed similar demographic characteristics
as the full study sample. Detailed demographic information for
the study samples is summarized in Table 1.

Associations Between Neuroinflammation,
Peripheral Inflammation, and Depression

Peripheral Inflammation and Depression. Consistent
with a recent study leveraging a larger UKB sample uncon-
strained by the need for neuroimaging data (56), CRP was
positively associated with RDSs in our study sample (t11499 =
3.45, b = 0.04, false discovery rate-corrected p [pFDR] , .005).
This association remained following covariate inclusion
(t11490 = 2.57, b = 0.02, pFDR , .05).

Associations With Neuroinflammation Estimates.
DBSI-RF metrics in whole-brain gray matter, hippocampus,
and amygdala were associated with each other (b = 0.09 2

0.41, pFDRs , .005), with the strongest correlation between
amygdala-RF and hippocampus-RF. Interestingly, only global-
RF was associated with CRP concentration (t11499 = 23.64,
b = 20.03, pFDR , .001); this negative association remained
significant with adjustment for all covariates (t11490 = 22.08,
b = 20.02, pFDR , .05). We did not find an association of
hippocampus-RF (b = 20.01, pFDR = .17), or of amygdala-RF
(b = 20.01, pFDR = .12) with CRP.

In line with our hypotheses, RF of the amygdala was
associated with significantly more depressive symptoms with
the adjustment for covariates (t11490 = 2.53, b = 0.02, pFDR ,

.05) (Figure 1A) and further inclusion of CRP concentration
(t11489 = 2.58, b = 0.02, pFDR , .05). Neither the global-RF
(t11490 = 1.87, b = 0.02, pFDR = .10) nor the hippocampus-RF
(t11490 = 1.23, b = 0.01, pFDR = .21) showed such an associa-
tion. Summary statistics for these associations between neu-
roinflammation estimates and depressive symptoms can be
found in Table S3.

As CRP was only significantly associated with global-RF,
we conducted the hypothesized mediation model for these
variables. However, we did not find evidence supporting a
mediation role of global-RF on the association between pe-
ripheral inflammation and depression (indirect effect ab
[ab here refers to the measure of the amount of mediation, with
a indicating the path from variable X (i.e., peripheral inflam-
mation) to variable M (i.e., neuroinflammation), and b the path
from variable M to Y (i.e., depression)]: Z = 21.33, p = .18).

Secondary Analyses for Lifetime MDD Phenotype

Results from our secondary tests on lifetime MDD phenotype
broadly recapitulated the findings observed with RDSs
described above, with minor differences (Table S4).

Briefly, although we did not observe differences in CRP
concentration or in global-RF or hippocampus-RF between
lifetime MDD and non–lifetime MDD participants (ps . .3), we
found a significant interactive effect of group (lifetime MDD vs.
no lifetime MDD) and amygdala-RF on depression symptoms
(t6947 = 2.59, b = 0.08, pFDR , .05) (Figure 1B). This effect was
robust against all covariates and further inclusion of CRP
concentration (t6946 = 2.6, b = 0.08, pFDR , .05). The follow-up
tests showed that amygdala-RF had a stronger relation to
depression symptoms in individuals with (t1682 = 3.02, b = 0.07,
p , .005) than in those without lifetime MDD (t5256 = 2.32, b =
0.03, p , .05). These effects remained with further adjustment
for CRP effect (ps , .03).

Robustness of Effects

Because some of the predictors and covariates were corre-
lated (Figure S1), we conducted follow-up tests to examine
whether the collinearity between predictors and covariates
might have biased the observed results. Our findings show that
the observed associative effects of CRP, and DBSI-RF of the
amygdala on depression symptoms were robust against mul-
ticollinearity, as indicated by very low generalized variance
inflation factor values for each independent variable in the
regression models (i.e., all below 1.12; see full list in Table S5).
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Additionally, because nearly half of the participants in the full
study sample reported no symptoms (n = 5592)—“Not at all” to
all 4 symptom questions—we further conducted a logistic
regression analysis to test whether the neuroinflammation
indices of the amygdala could also predict group identities (i.e.,
control group = reporting zero symptoms). We replicated the
amygdala-RF effect, showing that amygdala neuroinflammation
could differentiate 2 groups of participants based on their
depressive symptoms (Z = 3.06, b = 0.06, p , .005), with
specificity of 0.62 and sensitivity of 0.56. This predictive effect
remained when CRP concentration was considered in addition
to the inclusion of all covariates (Z = 3.09, b = 0.06, p , .005).

Furthermore, to ensure that the effects of amygdala-RF
were not driven by outliers (Figure 1), we repeated the ana-
lyses for the full study sample and lifetime MDD, after
excluding the outliers above 3 standard deviations of the
sample mean (n = 91 in the full study sample; n = 59 in the
lifetime MDD sample). Results remained consistent with minor
changes in coefficients (main effect in full study sample:
t11399 = 2.96, b = 0.03, p , .005; interactive effect with lifetime
MDD label: t6896 = 2.26, b = 0.06, p , .05).

Finally, we repeated the analysis with the amygdala-RF by
lifetime MDD status interaction with further consideration of
the time difference between these 2 measurements, which was
available for n = 8528 participants. The result remained sig-
nificant with adjustment for all covariates, including this time
lag, as well as CRP (t8515 = 2.89, b = 0.03, p , .005).
Furthermore, we repeated the same analysis for a subset of
participants (n = 4769), whose assessment of lifetime MDD
phenotype was performed prior to that of RDSs (i.e., ensuring
lifetime MDD as a history in time). We observed the same
interaction effect (t2031 = 2.86, b = 0.14, p , .005), which was
driven by significant amygdala-RF impact on depression
symptomatology in individuals with lifetime MDD (n = 842;
t830 = 2.97, b = 0.11, p , .005). Amygdala-RF showed no
association with depression in individuals without lifetime MDD
(t1190 = 1.11, b = 0.02, p = .27). When we further restricted

analyses to a subsample of participants whose time lag be-
tween lifetime MDD and imaging assessments occurred within
0 to 6 months of one another (n = 587), the lifetime MDD by
amygdala-RF interaction remained significant (t572 = 2.92, b =
0.23, p , .005), which was again driven by the lifetime MDD
group (n = 230; t217 = 2.49, b = 0.17, p , .05). Participants
without lifetime MDD (n = 357) showed no association between
amygdala-RF and depression (t344 = 2.22, b = 20.01, p = .82).

DISCUSSION

In the current study, we applied a novel noninvasive imaging
technique to derive index measures of neuroinflammation in 2
a priori-selected subcortical regions—the hippocampus and
amygdala—that have been consistently linked to depression
symptomatology (29–31,33). Our study aimed to investigate
whether the derived neuroinflammation indices could explain
variance in depressive symptom severity and whether such
neuroinflammation might mediate the impact of peripheral
inflammation on depression. Our findings demonstrate an as-
sociation between neuroinflammation at brain regional levels
and depressive symptomatology.

In particular, our findings show that the putative neuro-
inflammation index of the amygdala has a small but significant
association with depressive symptoms, especially in in-
dividuals with a lifetime history of MDD. This signal in the
amygdala retained its association with depression even after
adjusting for effects of demographics, lifestyles, and CRP
concentration, which also all showed significant associations
with depressive symptoms. In light of recent investigations on
the UKB dataset suggesting that the more strictly defined
lifetime MDD phenotype [i.e., based on Composite Interna-
tional Diagnostic Interview-Short Form (47)] may have higher
genomic and behavioral relevance specific to major depres-
sion (57,58), our results highlight a direct link between neuro-
inflammation index (i.e., inflammation-related cellularity) in the
amygdala and elevated depressive symptoms. Our findings are

Figure 1. Robust association between the amyg-
dala inflammation index and depression. (A)
Restricted fraction—the index of neuro-
inflammation—in the amygdala was associated with
depression: It predicted recent depressive symptom
severity in the full study sample (B) and showed a
stronger predictive effect on participants with lifetime
major depressive disorder (MDD) than those without
lifetime MDD. Note, all results remained significant
with the removal of the data point in the no Lifetime
MDD group that showed an abnormally large value
(more than 3 SD above mean) of amygdala-restricted
fraction (see Robustness of Effects).
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also consistent with a growing body of evidence showing that
inflammation can contribute to depression via the stress-
induced remodeling of amygdalar structure and function (59).
Future studies may further investigate whether the depression-
associated putative neuroinflammation is accompanied by
other alterations in structure and functions in this subcortical
region and in connected regions known to be involved in
depression and whether stress-related experiences may
modulate such associations.

Contrary to our hypotheses, however, we did not observe
an association between hippocampus-RF and depression
symptomatology even though the DBSI-RFs of the hippo-
campus and amygdala were moderately associated (b = 0.41),
and both of these subcortical regions are considered highly
relevant to depression (29–31,33). These results are broadly in
line with recent studies that linked peripheral inflammation
markers (e.g., CRP) to brain structure and function and sug-
gested that specific brain circuitry might be more vulnerable to
inflammation impact in individuals with depression (27,60,61).
It awaits to be tested whether other brain regions, such as
regions from the reward circuitry (e.g., ventral striatum,
caudate nucleus, and putamen), may exhibit greater sensitivity
to depression-related inflammation. Alternatively, previous
studies have linked peripheral inflammation markers with
depression symptom clusters (62) or subtypes (63), suggesting
that inflammatory underpinnings of depression may be better
characterized by symptom dimensions (64). In this study, we
used a sum score of 4 items to indicate the overall severity of
RDSs. The limited number of questions potentially restricted
explorations on depression with a multidimensional approach.
Future investigations may consider using depression assess-
ment instruments that allow for quantifying symptom di-
mensions and examining the associated inflammatory profiles.

In line with the literature (6,9), we also found a positive asso-
ciation between the baseline CRP concentration and depressive
symptom severity. This effect remained significant after control-
ling forphysical illnessanddemographic characteristics including
age, sex, body mass index, and smoking and drinking status. In
contrast to our expectations, however, we did not find evidence
suggesting that DBSI-RFs in whole-brain gray matter, hippo-
campus, or amygdala could mediate the CRP relationships to
depression symptomatology. In fact, the amygdala-RF and
baseline CRP seemed to explain complementary variance in
depression symptoms in the study samples (i.e., showing sig-
nificant effects separately in one multiple linear regression
model). Notably, the collectionofblood samples for baselineCRP
concentration took place on average 7.6 years before DWI data
acquisition. This large time difference might have blurred the
relationship between the inflammationmeasures in the peripheral
and central nervous systems. Nevertheless, when we repeated
the models, including this time difference as an additional co-
variate, the relationships of baseline CRP concentration and
neuroinflammation in the amygdala with depression symptom-
atology remained significant (amygdala: t11487 = 2.68, b = 0.02;
CRP: t11487 = 2.62, b = 0.02; ps , .01).

Limitations

The major limitation of this study concerned the time differ-
ences in data acquisition. First, the blood sample for assessing

CRP was collected on average 7.6 years prior to the acquisi-
tion of imaging data and assessment of depression symptoms.
Although CRP is stable over time and prospectively associated
with depression in older adults (13,65), this large time differ-
ence may have attenuated associations of both depression
and neuroinflammation with CRP. Second, the collection of
imaging data and the online questionnaire assessing lifetime
MDD occurred at different times, resulting in varying time lags
between these measurements at the individual level (i.e.,
ranging from 906 days before to 641 days after imaging
acquisition). This variation may further muddy the associative
effects in the current study. Nevertheless, our post hoc tests
show that the interaction effect of amygdala-RF and lifetime
MDD status remained with the additional inclusion of this time
lag in the model (see details in Robustness of Effects). Addi-
tional time-related complications may also be induced by the
time differences between depression onset and the acquisition
of variables, and a history of depression itself may further bias
our estimation. Yet, only a very small number of participants
(n = 176) in the current study sample had an ICD-10 diagnosis
of depression. When repeating analyses excluding these par-
ticipants to minimize potential confounds associated with
disorder onset, we observed the same associative effect of
amygdala-RF with depression (n = 11,304; t11292 = 2.62, b =
0.02, p , .01) and the same interaction effect with lifetime
MDD (n = 4747; t2009 = 3.01, b = 0.14, p , .005). It should also
be noted that the neuroinflammation measure (i.e., DBSI-RF) in
our study only indirectly assesses inflammation-related cellu-
larity. Although it has not been tested in individuals with
depression, DBSI-RF has been linked to increased cell nuclei
numbers and activated microglia in several neuroinflammatory
conditions (36,37,40,41) and associated with Alzheimer’s dis-
ease and obesity (38,39,42), for which neuroinflammation is
hypothesized to play a critical role (66,67). Our finding of the
amygdala-RF in relation to depressive symptoms demon-
strates a potential contribution of neuroinflammation to
depression symptomatology. Nevertheless, due to the lack of
evidence linking DBSI-RF with peripheral CRP in the current
study (e.g., an insignificant association of amygdala-RF with
CRP), our findings should be interpreted in the context that
DBSI-RF is an indirect and putative index of neuro-
inflammation. Finally, our study only examined this putative
neuroinflammation index in a limited number of brain regions
and only in relation to depressive symptoms. It remains to be
tested whether the observed amygdala-RF effect is specific to
depression and what specific symptoms of depression may be
most relevant. Given evidence linking peripheral inflammation
and reward-related neural circuitry (60,61,68,69) as well as
clinical presentations involving anhedonia and lethargy
(68,70,71), this remains a promising avenue for future work.

Conclusions

Our study applied the novel DBSI technique to derive regional
putative neuroinflammation indices for whole-brain gray mat-
ter, hippocampus, and amygdala and linked them with
depression symptomatology. Although we failed to find evi-
dence supportive of mediating effects for these neuro-
inflammation measures on the association between peripheral
inflammation and depression, we did observe a robust and
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significant effect of putative neuroinflammation in the amyg-
dala on depressive symptom severity across individuals with
and without a lifetime history of MDD, but more strongly in the
former group. Future studies are warranted to expand the
focus of brain regions outside the hippocampus and amygdala
and to assess whether neuroinflammation in other depression-
related regions (e.g., in reward circuitry) can also explain vari-
ance in depression symptomatology. With the very first eval-
uation of DBSI-based neuroinflammation in relation to
depression symptomatology, our study provides early evi-
dence suggesting the significance of regional neuro-
inflammation in depression symptom severity. These data add
to a growing body of research linking inflammation with
depression and demonstrating potential underlying mecha-
nisms for depression pathogenesis.
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