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Abstract

The UK Biobank (UKB) is a highly promising dataset for brain biomarker research into

population mental health due to its unprecedented sample size and extensive pheno-

typic, imaging, and biological measurements. In this study, we aimed to provide a

shared foundation for UKB neuroimaging research into mental health with a focus on

anxiety and depression. We compared UKB self-report measures and revealed impor-

tant timing effects between scan acquisition and separate online acquisition of some

mental health measures. To overcome these timing effects, we introduced and vali-

dated the Recent Depressive Symptoms (RDS-4) score which we recommend for

state-dependent and longitudinal research in the UKB. We furthermore tested uni-

variate and multivariate associations between brain imaging-derived phenotypes

(IDPs) and mental health. Our results showed a significant multivariate relationship

between IDPs and mental health, which was replicable. Conversely, effect sizes for

individual IDPs were small. Test–retest reliability of IDPs was stronger for measures

of brain structure than for measures of brain function. Taken together, these results

provide benchmarks and guidelines for future UKB research into brain biomarkers of

mental health.

K E YWORD S

brain correlates, depression, mental health, replication, test–retest, UK Biobank

1 | INTRODUCTION

Over the years, there has been a multitude of neuroimaging studies

that aimed to investigate alterations in the brain in relation to affect-

based mental health (e.g., anxiety and depression). The Major Depres-

sive Disorder (MDD) literature reports structural changes in the

cortico-limbic network (Klauser et al., 2015), insula and hippocampus

(Stratmann et al., 2014), as well as functional changes in the Default

Mode Network (DMN; Tozzi et al., 2021; Yu et al., 2019), medial

temporal gyrus, and caudate (Ma et al., 2012). In Generalized Anxiety

Disorder (GAD), similar functional changes are seen in the DMN

(Andreescu et al., 2011) and ventromedial prefrontal cortex (Cha

et al., 2014), as well as structural changes in the DMN (Wolf

et al., 2016) and amygdala (He, Xu, Zhang, & Zuo, 2016). However, the

literature on neural correlates of MDD contains some inconsistent find-

ings. For example, some studies report greater functional connectivity

in the DMN (Greicius et al., 2007; Sheline, Price, Yan, & Mintun, 2010)

while others report lesser functional connectivity in the same network

(Bluhm et al., 2009; Tozzi et al., 2021; Yan et al., 2019). A potential rea-

son for inconsistent findings is the small sample size of most of theseRosie Dutt and Kayla Hannon equally shared the joint first authorship.
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studies. The broader fields of psychology and neuroimaging are recog-

nizing that small sample sizes lead to inflated effect sizes that often

result from sampling variability and therefore do not replicate in new

data (Button et al., 2013; Grady, Rieck, Nichol, Rodrigue, &

Kennedy, 2021; Marek et al., 2020; Poldrack et al., 2017;

Yarkoni, 2009). Larger sample sizes are therefore needed to obtain reli-

able insights into the neural correlates of mental health.

One option to achieve larger sample sizes is to conduct meta-ana-

lyses. Meta-analyses use results from prior studies as their input and

employ quantitative methods to pool data across studies and test for

consensus (Müller et al., 2018). A meta-analysis on resting-state func-

tional connectivity in MDD showed hypo-connectivity in frontoparietal

and salience networks and hyper-connectivity in the DMN (Kaiser,

Andrews-Hanna, Wager, & Pizzagalli, 2015). Another meta-analysis

showed that there are common gray-matter volume changes in MDD

which are also seen in bipolar disorder (Wise et al., 2017). In GAD, meta-

analyses have also been able to confirm consistent dysregulation of

affective control related to numerous networks, which provides support

for an integrated model of brain network changes (Xu et al., 2019). While

these meta-analyses aid to establish consensus on brain correlates of

mental health (Wager, Lindquist, & Kaplan, 2007), they can be limited in

their scope. This is because the input studies surveyed in meta-analyses

often adopt narrow inclusion and exclusion criteria for the patient sam-

ple, which limits cross-diagnostic mental health research. Additionally,

due to the lack of availability of whole-brain statistical result images from

prior studies, coordinate-based meta-analyses are often undertaken

which are limited in their spatial precision (Müller et al., 2018). Further-

more, meta-analyses suffer from publication bias (only including effect

sizes from published significant studies; Thornton & Lee, 2000), language

bias (only including papers written in English; Egger et al., 1997), and

selective outcome reporting (input-papers selectively publish only signifi-

cant variables; Hutton & Williamson, 2000; Kirkham et al., 2010), which

can lead to inflated meta-analytical results (Sterne, Egger, &

Smith, 2001). These inherent limitations of meta-analyses may explain

why disagreement persists within even meta-analytical work, with a

recent study showing hypo-connectivity (rather than hyperconnectivity)

in the core DMN in patients with depression (Tozzi et al., 2021).

Consequently, in recent years, there has been a move to accrue

larger neuroimaging datasets such as the Young Adult and Lifespan

Human Connectome Projects (HCP; Harms et al., 2018; Van Essen

et al., 2013), Connectomes Related to Human Disease studies (CRHD;

Tozzi et al., 2020), UK Biobank (UKB; Miller et al., 2016; Sudlow

et al., 2015), Enhancing Neuro Imaging Genetics through Meta-Analysis

(ENIGMA; Schmaal et al., 2017), and Adolescent Brain Cognitive Devel-

opment study (ABCD; Casey et al., 2018). The increased statistical

power afforded by these datasets enables studies to approximate the

true effect (Marek et al., 2020). Currently, the UKB is the largest neuro-

imaging dataset, encompassing data from extensive questionnaires,

physical and cognitive measures, and biological samples (including

genotyping) in addition to multimodal neuroimaging scans (Sudlow

et al., 2015). The UKB is a prospective epidemiological study that rec-

ruited a cohort of 500,000 participants, of which 100,000 subjects will

take part in one round of imaging, and 10,000 of those subjects will

undergo a further second round of scanning (Sudlow et al., 2015).

Health outcomes for all participants will be tracked over future years

until participants' decease, including full primary health and hospital

records. Therefore, the UKB offers a valuable resource to study mental

health and other disorders. The goal of our study is to establish a foun-

dation for future mental health biomarker research in the UKB.

The UKB includes multiple rich self-report measures of mental

health. However, the organization and abundance of this information

can make it somewhat challenging for researchers to navigate. For data

pertaining to mental health, there are three sources within the UKB.

The first is the assessment center questions (https://biobank.ndph.ox.

ac.uk/showcase/label.cgi?id=100060) which participants complete via

a touch screen on the day they were scanned. The second is a sepa-

rately administered online mental health questionnaire (https://

biobank.ndph.ox.ac.uk/showcase/label.cgi?id=136), which is completed

by a subset of UKB participants at a time-independent from the scan-

ning date (median absolute number of days between scan 1 and online

questionnaire completion: 742, range: �1,185 to +964 days in explor-

atory sample). The third is the health records available in the UKB

which encompass the date of the first experience of specific ICD-10

diagnoses obtained from primary care (https://biobank.ndph.ox.ac.uk/

showcase/label.cgi?id=3000) and hospital inpatient data (https://

biobank.ndph.ox.ac.uk/showcase/label.cgi?id=2000). In this study, we

tabulate and compare different mental health measures available in the

UKB, with a focus on self-reported symptom scores from the assess-

ment center information and online questionnaire. We test their rela-

tionship with brain measures, thereby providing a benchmark for using

UKB mental health variables in future research.

This study aims to achieve four key goals. First, we aim to clearly

tabulate the different self-report measures of mental health available

in the UKB and discern the relationships between summary scores to

enable future studies to make an informed decision on which measure

is most appropriate to use. Second, we propose and validate a new

summary measure (Recent Depressive Symptoms; RDS-4) that uses

depression questions which were asked on the day of scanning in the

UKB study. The RDS-4 score, therefore, enables research into current

depressive symptoms and changes in symptomatology over time.

Third, we aim to establish realistic and robust univariate and multivari-

ate effect sizes of commonly reported brain correlates of mental

health based on population data. Finally, we aim to determine the

test–retest reliability of imaging variables alongside their effect size as

both reliability and sensitivity are critical requirements for biomarker

research. Large-scale imaging datasets such as the UKB play a critical

role in the long-term goal of finding brain biomarkers of mental health,

and we hope to provide a foundation that future studies can build on.

2 | METHODS

2.1 | Dataset

Imaging data from 32,420 UKB participants were available at the time

the study was performed. From this, we selected multiple
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independent test cohorts (Figure 1 and Table 1). Subjects with a mean

head motion greater than 0.2 mm were removed resulting in the

exclusion of 5,265 subjects. Subjects with any missing online ques-

tionnaire or scan 1 assessment center mental health data were also

removed, resulting in the exclusion of additional 10,848 subjects

(largely because the online questionnaire was only performed in a

subset of UKB participants). From the remaining 16,307 subjects, we

selected individuals who had undergone brain scans at two

timepoints. These subjects make up the test–retest sample.

Late-onset depression (first episode at age 60+) is associated

with different brain correlates (e.g., white matter hyperintensities)

and different risk factors (e.g., vascular risk) compared with recurrent

early-onset depression (age of first episode before 60; Salo,

Scharfen, Wilden, Schubotz, & Holling, 2019). Therefore, we

assessed subjects for probable late-onset depression based on self-

reported age at the first episode of depression (Data-field: 20433).

Subjects who reported their first episode at 60 or older (N = 418)

were excluded.

The majority of individuals within the UKB cohort are expected to

have no mental health conditions because it is a population sample. To

ensure sufficient power to identify neural correlates of mental health, we

wanted to reduce the expected over-representation of healthy individ-

uals and ensure that our samples richly capture mental health variability.

This was achieved by including equal numbers of participants with and

without a history of mental health. From the UKB showcase we used:

Seen doctor (GP) for nerves, anxiety, tension, or depression (Data-field:

2090) to ensure our samples included an equal number of subjects who

experienced mental health issues on at least one occasion, and those

who have not. For each subject who had seen a GP for nerves, anxiety,

tension, or depression (N = 4,531), we paired a matched subject from

those who had never seen a GP for nerves, anxiety, tension, or depres-

sion (i.e., subject pairs were identically matched for sex and age, and

F IGURE 1 UK Biobank
subject inclusion chart

TABLE 1 Demographics for samples

Sample N Sex (n male) Age (mean ± SD) Time between scans (mean absolute days ± SD)

Exploratory 6,636 2,258 61.9 ± 7.2 N.A.

Confirmatory 2,426 796 60.6 ± 7.1 N.A.

Test–retest 624 300 61.7 ± 7.04 823.7 ± 44.8

Note: The “ever seen GP for mental health” and “never seen GP for mental health” subjects were matched, such that the same male-to-female ratio and

mean age applies to these groups.
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minimal difference in head motion). Subsequently, approximately two-

thirds of the “never seen GP” subjects together with their matched

“seen GP” subjects were randomly assigned to the exploratory sample,

and the remaining subjects were assigned to the confirmatory sample.

During a subject assignment to groups, we preserved the matched char-

acteristics within each resulting sample (Figure 1). No subjects over-

lapped between the exploratory and confirmatory samples.

2.2 | Mental health measures

The set of self-report questions related to mental health included

in the UKB were informed by standardized measures, but did not

simply cover a list of previously validated scales. Table 2 summa-

rizes the five different UKB mental health measures, which will be

used for neuroimaging and questionnaire comparison analyses and

TABLE 2 Measures of affect-based mental health available in the UK Biobank

Scan day Online Range Questions Variable IDs

PHQ-9 ✔ 0–27 Little interest or pleasure in doing things 20514

Feeling down, depressed, or hopeless 20510

Trouble sleeping 20517

Feeling tired 20519

Poor appetite or overeating 20511

Feeling bad about yourself 20507

Trouble concentrating 20508

Moving or speaking slowly or fidgety or restless 20518

Thoughts that you would be better off dead 20513

RDS-4 ✔ 4–16 Frequency of depressed mood in last 2 weeks 2050

Frequency of unenthusiasm/disinterest in last 2 weeks 2060

Frequency of tenseness/restlessness in last 2 weeks 2070

Frequency of tiredness/lethargy in last 2 weeks 2080

GAD-7 ✔ 0–21 Feeling nervous, anxious, or on edge 20506

Not being able to stop or control worrying 20509

Worrying too much about different things 20520

Trouble relaxing 20515

Being so restless that it is hard to sit still 20516

Becoming easily annoyed or irritable 20505

Feeling afraid as if something awful might happen 20512

N-12 ✔ 0–12 Mood swings 1920

Miserableness 1930

Irritability 1940

Sensitivity/hurt feelings 1950

Fed-up feelings 1960

Nervous feelings 1970

Worrier/anxious feelings 1980

Tense/“highly strung” 1990

Worry too long after embarrassment 2000

Suffer from “nerves” 2010

Loneliness, isolation 2020

Guilty feelings 2030

Probable depression status ✔ 0/1 Ever depressed 4598

Ever unenthusiastic/disinterested 4631

Duration of the longest period of depression 4609

Duration of the longest period of unenthusiasm/disinterest 5375

Seen doctor (GP) for nerves, anxiety, tension, and depression 2090

Seen psychiatrist for nerves, anxiety, tension, and depression 2100

Abbreviations: GAD-7, general anxiety disorder-7; N-12, neuroticism-12; PHQ-9, patient health questionnaire-9; RDS-4, recent depressive symptoms-4.
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Figure 2 provides an overview of the acquisition timing of these

mental health measures relative to the scan days. The questions

included in the online questionnaire enable calculation of the Gen-

eralized Anxiety Disorder (GAD-7) and Patient Health Question-

naire (PHQ-9) scores (Davis et al., 2020). Using the Assessment

center information, the Eysenck Neuroticism (N-12) score was cal-

culated. Smith et al. (2013) used questions from the assessment

information to develop a categorical (case–control) measure of

depression. For the purposes of our study, we adopted similar defi-

nitions to obtain a categorical assignment of Probable Depression

Status, but we did not differentiate between single and recurrent

episodes of depression. Depression status was set to 1 if subjects

responded yes to variable IDs 4598 or 4631 (ever depressedjever
unenthusiastic/disinterested), and reported a duration of at least

1 week to variable IDs 4609 or 5375 (depressionjunenthusiasm/

disinterest), and had seen either a GP or psychiatrist for nerves,

anxiety, tension, depression (i.e., responded yes to variable IDs

2090 or 2100).

For our study, we proposed a new summary measure of state

depression using UKB questions included in the Assessment center infor-

mation: Recent Depressive Symptoms (RDS-4), which is a continuous

measure of depression symptomatology obtained on the day of scanning.

The four self-report questions used for the RDS-4 assess depressed

mood, disinterest, restlessness, and tiredness. Each question asks about

recent experiences of symptoms (past 2 weeks). The response options

for the four questions are (a) not at all, (b) several days, (c) more than half

the days, and (d) nearly every day. The summed score across these four

variables, therefore, has a range of 4–16. Moreover, the RDS-4 questions

correspond with several DSM-V diagnostic criteria for major depressive

disorder and cover depression domains that are also considered in other

measures such as the Hamilton and Montgomery–Åsberg scales.

There are a number of important differences between the

RDS-4 and the other mental health measures. Compared to PHQ-9,

the RDS-4 was obtained on the day of the imaging scan, whereas

the PHQ-9 was undertaken at a time point that was independent of

the scan date. Compared to probable depression status, the RDS-4

provides a continuous measure of recent symptom severity,

whereas probable depression status is a categorical (case–control)

measure of lifetime occurrence of depression. Compared to N-12,

RDS-4 is a measure of recent (state) depressive symptoms, whereas

N-12 is a more general measure of personality (trait). Compared to

GAD-7, the RDS-4 focuses on depression and the GAD-7 focuses

on anxiety.

2.3 | Imaging acquisition

UKB structural modalities include T1-weighted (T1), T2-weighted (T2),

susceptibility-weighted MRI (swMRI), diffusion MRI (dMRI), and func-

tional modalities: task-based fMRI (tfMRI) and resting-state fMRI

(rsfMRI). MRI data were obtained using a Siemens Magnetom Skyra 3 T

scanner. For T1 structural scans, 3D MPRAGE acquisition was used to

acquire 1 mm isotropic resolution. For T2 scans, fluid-attenuated inver-

sion recovery (FLAIR) contrast was used with the 3D SPACE optimized

readout providing a strong contrast for white matter hyperintensities.

For swMRI, a 3D gradient echo acquisition was used (resolution: 0.8

� 0.8 � 3 mm), obtaining two echo times (TE = 9.4 and TE = 20 ms).

Diffusion data was acquired with b-values of 1,000 and 2,000 s/mm2, at

2 mm spatial resolution, with a factor 3 multiband acceleration and

50 distinct diffusion-encoding directions. Both tfMRI and rs-fMRI used

identical acquisition parameters (spatial resolution = 2.4 mm,

TR = 0.735 s, factor = 8 multiband accelerator). Task fMRI used the Har-

iri faces/shapes “emotion” task as employed in the HCP (Barch

et al., 2013; Hariri, Tessitore, Mattay, Fera, & Weinberger, 2002), with a

shorter total length and reduced repeats of the total stimulus block. For

further information on UKB imaging, please refer to Miller et al. (2016).

F IGURE 2 Schematic overview of the acquisition timing of UK Biobank mental health measures in relation to imaging acquisition. Mental
health measures in light green were obtained on the day of scanning, whereas mental health measures in light blue were obtained at an
independent time point that varied from 1,185 days before to 964 days after scan 1 across participants. The range of possible scores for each
mental health measure is included. All five measures were included in neuroimaging and questionnaire comparison analyses in this article

820 DUTT ET AL.



2.4 | Imaging derived phenotypes

In addition to raw and processed imaging data, image-derived pheno-

types (IDPs) are available for download. IDPs are derived from calcula-

tions that combine many images and/or voxels to produce a scalar

quantity from the processed imaging data (Miller et al., 2016). Exam-

ples of IDPs include regional volumes from structural MRI and “edges”
from resting-state functional MRI (i.e., connectivity between a pair of

networks).

The IDPs included in this paper are summarized in Table 3, and

further information can be found in (Miller et al., 2016) as well as the

UKB showcase brain imaging documentation resource (https://

biobank.ndph.ox.ac.uk/showcase/showcase/docs/brain_mri.pdf).

Briefly, resting-state IDPs were obtained using Independent Compo-

nents Analysis performed at two different dimensionalities (25 and

100), which resulted in 21 and 55 signal networks, respectively.

Subject-specific BOLD time series for each network were calculated

using dual regression (Nickerson, Smith, Öngür, & Beckmann, 2017),

and the amplitude for each network (temporal standard deviation)

and functional connectivity between pairs of networks (full or partial

correlation coefficients) were calculated. Resting-state IDPs from

both ICA dimensionalities were included as they may offer comple-

mentary information at different levels of functional organization.

From T1-weighted images, gray matter volumes were obtained with

FSL FIRST and FAST, and cortical area and thickness were calculated

with Freesurfer. Total volume of white matter hyperintensities was

estimated based on T1-weighted and T2-flair images using FSL's

BIANCA algorithm (Griffanti et al., 2016). From the diffusion data,

weighted mean fractional anisotropy (FA) and mean diffusivity

(MD) were obtained using FSL's DTIFIT tool. Task fMRI IDPs reflect

summary measures of activation (the median and 90th percentile for

both the percent signal change and the z-statistic) in regions selected

from the group-level activation map. Susceptibility weighted IDPs

were generated from the signal decay times predicted from the mag-

nitude images at the two TEs such that the IDPs equate to the

median signal decay times.

2.5 | Confound variables

All analyses were corrected for the “simple” set of confounds

described in (Alfaro-Almagro et al., 2021), namely, scanning site, age,

age squared, sex, age * sex, head size, head motion in resting fMRI

and in task fMRI scans, date, and date squared. This confound set was

previously shown to explain 4.4% of variance in UKB imaging vari-

ables on average and captured the most important sources of con-

found variation (Alfaro-Almagro et al., 2021).

2.6 | Correlations among mental health variables in
the UKB

To characterize the degree of overlapping information between men-

tal health measures, Spearman rank correlations were computed

between all measures of mental health using data from the explor-

atory sample (N = 6,636).

TABLE 3 Full set of IDPs considered
for canonical correlation analysis

# IDPs UKB ID Description

Resting state 21 25754 rfMRI network amplitudes from 21 signal components

55 25755 rfMRI network amplitudes from 55 signal components

210 25750 Pairwise full correlation edges between 21

components

210 25752 Pairwise partial correlation edges between 21

components

1485 25751 Pairwise full correlation edges between 55

components

Total = 3,466 1485 25753 Pairwise partial correlation edges between 55

components

Structural 139 1101 FAST gray matter volumes

14 1102 FIRST gray matter volumes

62 196 Cortical surface area from Freesurfer DKT atlas

62 196 Cortical thickness from Freesurfer DKT atlas

1 25781 Total volume of white matter hyperintensity

27 107 Weighted-mean FA

27 107 Weighted-mean MD

Total = 346 14 107 Median T2-star from susceptibility-weighted imaging

Task 16 106 Task fMRI median + 90th percentile of BOLD effect

and z

Abbreviations: IDP, imaging-derived phenotype; UKB, UK Biobank.
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Data used to compute RDS-4 and N-12 were collected at the

scan date (assessment center information), whereas GAD-7 and

PHQ-9 were computed from data obtained from the online question-

naire. The absolute number of days elapsed between the two data

collections ranged from 0 to 1,185 days. To investigate the effects of

measurement latency on mental health measure correlation, Spear-

man rank correlations between the RDS-4 and PHQ-9 (both measures

of depression) were computed as a function of elapsed time between

measurement (see Supplementary Materials Section S1 and

Figure S1).

To test whether self-report measures differed significantly based

on probable depression status, a two-sample Kolmogorov–Smirnov

test was performed to ascertain whether subjects with a positive

depression status had different distributions of depression scores than

subjects with no depression status.

2.7 | Mapping between mental health variables in
the UKB

To gain insights into how the different measures of mental health

included in the UKB relate to each other, we used equipercentile

linking in the exploratory sample. Here, the stepwise percentiles for

each measure were calculated, and for each score in one measure, the

equivalent percentile rank in a different measure was mapped

(Kolen & Brennan, 2014). We further calculated the Cronbach alpha

for the newly proposed RDS-4 score to measure internal consistency

in the exploratory sample.

2.8 | Mechanical Turk study to validate RDS-4

To further validate the proposed RDS-4 score, we performed an inde-

pendent study using the Amazon Mechanical Turk platform via

CloudResearch.com (Litman, Robinson, & Abberbock, 2017). Partici-

pants were paid a nominal compensation for questionnaire comple-

tion. One hundred thirty-four participants aged 60+ completed the

study. This study was reviewed by the Washington University in St

Louis IRB board and approved as exempt (IRB #201909165) because

participants were fully anonymous (the option of anonymized worker

IDs in CloudResearch was adopted) and no participant key was avail-

able to any member of the research team.

Participants completed the same set of mental health question-

naires at two time points 7 days apart using the Qualtrics software

(Qualtrics, Provo, UT). The following questionnaires were presented in

randomized order: RDS-4, PHQ-9, CES-D (Center for Epidemiological

Studies—Depression; Radloff, 1977) and MASQ-30 (short-form Mood

and Anxiety Symptoms Questionnaire; Wardenaar et al., 2010;

Watson & Clark, 1991). The latter two measures were included

because they are commonly used measures of depression that can be

considered “gold standard” for self-report. Although these measures

are not available in the UKB, our goal was to validate the RDS-4

against these standardized measures.

We undertook multiple steps to avoid low-quality responses,

which can be a concern in Mechanical Turk questionnaire research.

First, we adopted premium options in CloudResearch, such as only

including “CloudResearch approved participants” who undergo more

extensive vetting. Second, we included two questions to assess the

attention levels of the participants while performing the study (“If you
are still paying attention, please select ‘yes’” & “Please answer this

question with the ‘Most or all of the time’ option”). Participants who

failed to answer these questions appropriately were excluded. Third,

we imposed a minimum duration for questionnaire completion at

172.5 s (which equals 2.5 s per question). Participants who completed

the questionnaire in less than 172.5 s were excluded.

Spearman rank correlation was used to compare scores between

the RDS-4, PHQ-9, CES-D, and MASQ-30 using data from time point

1. Intraclass correlation coefficient (ICC A,1; also known as criterion-

referenced reliability; Koo & Li, 2016; McGraw & Wong, 1996) was

used to calculate the test–retest reliability between time point 1 and

time point 2 separately for each measure.

2.9 | Exploratory brain–mental health analysis

We used Canonical Correlation Analysis (CCA) as a data-driven

approach to identify joint multivariate relationships between mental

health measures and brain imaging variables (Hotelling, 1936). Follow-

ing nuisance regression to remove variance explained by nuisance

regressors, dimensionality reduction was performed separately for

resting state, structural, and task IDPs (Table 3) using Principal Com-

ponent Analysis (PCA). The substantial differences in IDP numbers

between resting-state IDPs (3,466), structural IDPs (346), and task

fMRI IDPs (16) were the reason for performing the dimensionality

reduction separately to ensure that all classes of IDPs were represen-

ted in the input components. The top components explaining at least

50% of variance were retained for each of resting state, structural,

and task IDPs. This threshold was chosen as a good trade-off between

retaining a substantial amount of IDP variance for the CCA while lim-

iting the number of input variables to the CCA to ensure a sufficient

subject-to-variable ratio required for stable CCA results (Helmer

et al., 2021). The structural and task IDP matrix included a small num-

ber of missing values, which were excluded for the nuisance regres-

sion and then imputed using nearest neighbor imputation (MATLAB's

knnimpute.m). The combined set of IDP eigenvectors were entered

into the CCA against five mental health input variables corresponding

to summary scores from GAD-7, N-12, PHQ-9, RDS-4, and probable

depression status (residuals after regressing out confound variables).

CCA was performed on N = 6,636 subjects in the exploratory sample.

Permutation testing with 2,000 permutations was used to obtain

p values for the resulting canonical correlations. Here, the subject

order of IDP component inputs and mental health inputs were inde-

pendently shuffled to break subject correspondence. This is especially

important for CCA because the canonical correlation is explicitly maxi-

mized and therefore it is important to compare the canonical correla-

tion to the empirical null distribution obtained with permutation
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testing (which does not center around zero but shows relatively high

null correlations; Smith et al., 2015).

To calculate the univariate contributions (or “loadings”) from indi-

vidual IDPs to the CCA result, we correlated subject scores against

original IDPs. For this purpose, the “U” and “V” canonical subject

scores from the strongest CCA result were averaged within each sub-

ject to obtain a CCA summary subject score (UV). Here, U = XA and

V = YB, where X is the IDP principal component inputs and Y is the

mental health inputs. A and B are the canonical coefficients for IDP

eigenvectors and mental health variables respectively, which are opti-

mized such that the correlation between U and V is maximized. We

could calculate IDP contributions by correlating U with the IDPs, but

the resulting correlations would potentially be inflated because U is

optimized for X. Therefore, using the averaged UV subject score for

correlations with the IDPs provides a more realistic and unbiased

measure of individual IDP correlations (Bijsterbosch et al., 2018).

Bonferroni correction for multiple comparisons was performed for

these post-hoc correlations that were used to estimate univariate

contributions from each original IDP (i.e., p-value below .05/(3,466

+ 346 + 16) = 1.3 � 10�5, where 3,466 is the number of resting-

state IDPs, 346 is the number of structural IDPs, and 16 is the number

of task IDPs). IDPs that survived correction were selected for subse-

quent tests of effect size in the confirmatory sample. These IDPs are

referred to as “selected brain variables” in subsequent confirmatory

analyses.

The multivariate CCA results were also replicated in the indepen-

dent confirmatory sample by projecting the resting state, structural,

and task IDPs onto the same PCA subspace (i.e., not repeating the

PCA, but using the weights from the exploratory sample), and multi-

plying brain eigenvectors as well as mental health scores by their

respective canonical coefficients (i.e., A & B as estimated from the

exploratory sample). The CCA replication was tested based on the

correlation between the resulting U and V (i.e., the canonical correla-

tion). We also performed the same post-hoc univariate correlations

between averaged UV and individual IDPs as described above to

assess the replicability of IDP contributions to the CCA.

2.10 | Confirmatory analysis of effect size

The independent confirmatory sample (N = 2,426) was used to test

univariate effect sizes of selected brain variables from CCA analysis

(i.e., significant IDPs after Bonferroni correction). Specifically, we per-

formed a Cohen's d test based on probable depression status, and cal-

culated the Pearson's r from the correlations between the selected

brain variables and each of the four mental health variables

(i.e., RDS-4, PHQ-9, N-12, and GAD-7), respectively. These analyses

were repeated for each imaging modality including surface area, gray

matter volume, cortical thickness, white matter hyperintensity, frac-

tional anisotropy, median T2*, task activity, resting-state network

amplitude, and edge connectivity at both dimensionalities (i.e., 25 and

100). We de-confounded both the brain variables and the mental

health variables before running the aforementioned analyses. The only

exception from de-confounding is the binary grouping based on prob-

able depression status, as de-confounding would result in subject-

specific values that are noncategorical, which is unsuitable for the

Cohen's d test.

2.11 | Test–retest reliability of imaging measures

To assess the stability of IDPs across time, we performed test–retest

reliability analyses using data from N = 624 subjects that were

scanned twice at separate time-points, with an inter-scan interval of

approximately 2 years (Table 1). Data were de-confounded for this

sample using the same approach employed for the exploratory CCA

analysis. After data were de-confounded, intra-class correlations were

computed between the IDPs collected at each scan time-point using

the ICC(A,1) formulation to quantify the agreement between mea-

surements collected at each timepoint (McGraw & Wong, 1996).

Test–retest reliability measures were grouped according to IDP mea-

surement modality (e.g., cortical area, cortical volume, etc.) to allow

for assessment of the ICC distributions for different modalities.

We also assessed the effect of inter-scan interval length on the

test–retest correlation strengths by computing ICCs for each IDP after

including regressing out the inter-scan interval (in days) from each

IDP, thus removing any additional variance attributable to inter-

subject differences in inter-scan interval lengths. Finally, we assessed

whether ICCs were affected by mental health changes as indicated by

the difference in the RDS-4 scores between timepoints. Of the

N = 624 subjects included in the test–retest analyses, n = 336

exhibited no change in RDS-4 scores between timepoints, while

n = 288 exhibited changes in RDS-4 scores between time-points

(i.e., at least 1 point difference in the RDS-4 scores). For these ana-

lyses, we separately computed ICCs for each mental health sub-group

and then plotted the ICC distributions for each modality between the

sub-groups. We also computed ICCs after regressing out mental

health change values from each IDP.

3 | RESULTS

3.1 | Correlations among mental health variables in
the UKB

Mental health measures showed moderate correlations with one

another, indicating redundancy between these metrics (Figure 3a).

RDS-4 and N-12, which are both measured from questions adminis-

tered on the scan date, had a Spearman rank correlation coefficient

(SRCC) of ⍴ = .57 ± 0.01 p≈10�199
� �

; PHQ-9 and GAD-7, which

were both taken from the online questionnaire, have SRCC ⍴ = .69

±0.01 p≈10�267
� �

. Correlations between PHQ-9 and GAD-7 scores

were significantly higher than between any other pairs of

scores (p<10�9).

Both the RDS-4 and N-12 measures were collected at each scan

time, which allows for an assessment of the within-measure 2-year
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correlation of these measures on a sample of N = 555 subjects from

the test–retest sample (69 subjects were removed from the full

N = 624 test–retest sample due to missing mental health assessment

center information on scan 2). Within this subgroup, the subjects'

RDS-4 measures showed a 2-year Spearman rank correlation coeffi-

cient of ⍴ = .57 between initial and follow-up scans, and N-12

showed a 2-year correlation of ⍴ = .85. It should be noted that this

reflects the correlation between scan timepoints between 761 and

980 days apart. Therefore, a given metric's 2-year correlation

(i.e., self-correlation over a long time period) effectively establishes an

approximate upper bound on any correlation value between it and

other metrics collected over the same time frame. Because anxiety

and depression are not fixed states and scores may meaningfully differ

between the two timepoints available in the UKB, we also performed

a separate Mechanical Turk study to test the short-term (7-day) test–

retest reliability of RDS-4 (see Section 3.3).

We performed a two-sided, two-sample Kolmogorov–Smirnov

test on RDS-4, PHQ-9, N-12, and GAD-7 scores over subjects with

and without probable depression status. Subjects with probable

depression scored significantly higher than subjects with no probable

depression status on all measures (KS-statistic χ ≥ 0:19,p≤10�48;

Figure 2b).

3.2 | Mapping between mental health variables in
the UKB

Given that this is a largely healthy sample, as expected, the distributions

for PHQ-9, RDS-4, and GAD-7 all reveal a large number of participants

with scores on the lower end of the mental health measure, with a

sharp decline seen in the number of participants scoring on the upper

end of the mental health measures (Figure 4a–d). Notably, the distribu-

tion of N-12 is relatively less skewed than PHQ-9, RDS-4, and GAD-7.

Equipercentile linkage was used to map between different mea-

sures of mental health. The results show a stable and approximately

linear mapping between RDS-4 and PHQ-9 (Figure 4e). Additionally,

our results show the stable mapping between RDS-4 and N-12

(Figure 4f), and between N-12 and GAD-7 (Figure 4g). These results

are in line with the literature showing that the personality trait of neu-

roticism is closely associated with mental health (Lahey, 2009).

We calculated Cronbach's internal consistency alpha for RDS-4,

which measures the internal consistency. The Cronbach alpha for

RDS-4 was .78, which indicates a moderate to strong internal reliabil-

ity. This was similar to N-12 (Cronbach alpha = .83).

3.3 | Mechanical Turk study to validate RDS-4

Out of 134 subjects who completed our separate validation study,

three subjects were removed because they failed the attention ques-

tions and a further 44 subjects were removed because they com-

pleted the surveys too fast, resulting in N = 87 subjects (53 female

and 34 male; mean age 66.0 ± 4.8). The results showed that RDS-4

was highly correlated with other depression scales and achieved test–

retest reliability comparable to other depression scales (Table 4).

3.4 | Exploratory brain–mental health analysis

Prior to performing the CCA, the data reduction of resting-state IDPs

resulted in 100 components which explained 50.1% of variance. The

data reduction of the structural IDPs resulted in 24 components

which explained 50.6% of variance. The data reduction of the task

IDPs resulted in two components which explained 51.2% of variance.

Therefore, the total number of brain variables input into the CCA was

126 and this was tested against the five mental health variables. The

F IGURE 3 (a) Spearman rank correlation coefficients between each pair of mental health measures. Variables measured on the same date are
labeled the same color (green = assessment center day-of-scan information; blue = online questionnaire). (b) Distributions of scores for subjects
with probable depression status (pink) and without probable depression status (cyan). Subjects with probably depression status scores
significantly higher on all mental health measures (KS-statistic χ ≥0:19,p≤ 10�48)
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CCA resulted in two significant canonical covariates (R1UV = 0.207,

p = .0005, and R2UV = .174, p = .015). The first multivariate canoni-

cal correlation partly replicated in the independent confirmatory sam-

ple (R1UV[confirmatory] = 0.125, p = 3.7 � 10�9, where the p-value was

Bonferroni corrected for the maximum of five canonical correlations).

Although the second canonical correlation also reached significance in

the confirmatory sample (R2UV[confirmatory] = 0.06, pBonferroni = .02),

we did not perform post-hoc analysis for this finding due to the low

canonical correlation in the replication sample. There are a number of

factors that may have contributed to the replicability of the first

canonical correlation. First, the CCA was relatively well-powered with

50.7 subjects per input variable leading to relatively stable estimates

(Helmer et al., 2021). Second, the exploratory and confirmatory sam-

ples were well matched in terms of sample characteristics. Third, data

reduction of IDPs before CCA likely reduces measurement noise.

Post-hoc correlations between the averaged UV subject scores and

the mental health variables and IDPs also replicated well (Figures 5

and S2).

In terms of post-hoc correlations with IDPs, 770 resting-state

IDPs and 86 structural IDPs, and 1 task IDP were significantly corre-

lated with the canonical covariate (UV) after Bonferroni correction for

multiple comparisons. The post-hoc CCA results confirm many regions

previously highlighted in the literature such as prefrontal and

orbitofrontal cortices.

F IGURE 4 Panels (a)–(d) are the distributions of scores for participant responses to each questionnaire. Panels (e)–(g) depict the
equipercentile linkages of the scores for each questionnaire, mapping the equivalence of a score from one questionnaire to the score of the other
questionnaire

TABLE 4 Comparison of RDS-4 to other depression scales from
MTurk study

Test–retest
reliability (ICC)

Correlation
with RDS-4 (⍴)

RDS-4 0.88 –

CES-D 0.91 .89

PHQ-9 0.94 .91

MASQ general distress 0.87 .78

MASQ anhedonic depression 0.82 .67

MASQ anxious arousal 0.92 .71
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IDPs that contributed significantly to the CCA were also tested

for univariate direct correlations with individual mental health vari-

ables in the independent confirmatory sample (see next section for

the results). For these follow-up univariate tests, we furthermore sup-

plemented the target IDPs with a literature-curated list (Table S1) that

partly overlaps with the data-driven IDP identification.

3.5 | Confirmatory analysis of effect size

Our findings showed that univariate effect sizes of the relationship

between IDPs and mental health determined in our robust population

sample were very low. Overall, effect sizes of the differences in the

brain variables (i.e., IDPs), indicated by Cohens' d, based on probable

depression status, were larger than the Pearson's r values from corre-

lations between IDPs and continuous mental health measures

(Figure 6). On average, resting-state node amplitude and edge connec-

tivity derived from partial correlation matrices appeared to have the

higher effect sizes in most mental health measures, and task activity

and fractional anisotropy ranked high in some mental health mea-

sures. At the level of individual IDPs, edges derived from both partial

and full correlation matrices emerged as the best “predictors” in

explaining data variance in all mental health variables except for

PHQ-9 where amplitude of a few resting-state nodes ranked at top

(Figures S3–S7). These findings together suggest an overall higher

effect size of resting-state in contrast to nonresting state measures on

the investigated mental health variables.

3.6 | Test–retest reliability of imaging measures

We next assessed the stability of IDPs over time in 624 subjects who

had data from two separate scan sessions conducted approximately

2–2.5 years apart. Figure 7a shows the distribution of inter-scan inter-

vals for all 624 subjects. To assess test–retest reliability, ICCs were

computed between the scan 1 measurements for each IDP and the

corresponding scan 2 measurements for the same IDP. Then, the ICCs

were assigned to categories based on the measurement modality of

the corresponding IDPs: brain surface area (62 measures), brain vol-

ume (154 measures), cortical thickness (CT: 62 measures), fractional

anisotropy (FA: 27 measures), mean diffusivity (MD: 27 measures),

T2* value (T2: 14 measures), task activation (TA: 16 measures),

resting-state time-series amplitudes (AMP: 76 measures), full

correlation-based resting-state networks (FNT: 1,695 measures), and

partial correlation-based resting-state networks (PNT: 1,695

measures).

F IGURE 5 Canonical correlation results. (a) Post-hoc correlations for nonresting (structural and task) IDPs, showing only significant IDPs after
Bonferroni correction. A similar figure for the resting state IDPs is included in Figure S2. (b) (inset): Post-hoc CCA relations for mental health show
that the first canonical covariate is broadly linked to affect-based mental health
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F IGURE 6 Effect sizes are
shown for the grouped brain
variables of structural (Area,
Volume, Cortical Thickness,
Fractional Anisotropy, and T2*)
and functional (Task Activity,
Amplitude, Full Network
connectivity matrix, and Partial
Network Connectivity Matrix)

modalities. Blue boxes indicate
the middle 50% of the data
(i.e., the range between the first
and third quartile), and small black
squares and blue lines inside each
box represent the mean and
median values, respectively.
Outliers for each grouped brain
IDP are shown as blue circles,
which are above the 1.5 times of
inter-quartile range (IQR),
indicated by the whiskers
extending from the boxes. For
detailed assessments of effect
sizes in specific IDPs, refer to
Figures S3–S7

F IGURE 7 Test–retest analyses. (a) The histogram shows the inter-scan interval distribution for the 624 subjects included in these analyses.
The x-axis shows days between scans, and the y-axis shows the number of subjects. (b) The boxplots show the ICCs obtained using brain IDPs
after standard confound regression (blue) versus ICCs obtained using brain IDPs after standard confound regression plus regressing out effects of
inter-scan interval length (orange). IDP measurement modality categories are organized along the x-axis, and the y-axis shows ICC values (see also
Figure S8)

DUTT ET AL. 827



Figure 7b depicts the distributions of ICCs for each IDP measure-

ment modality obtained using the confound-regressed data from both

scan time-points, along with those obtained after additionally

regressing out the effects of inter-scan interval length (i.e., days

between scans). Notably, ICC distributions were highly similar for

both analyses. In general, IDPs corresponding to measures of brain

structure had higher ICCs than IDPs corresponding to measures of

brain function. The highest ICCs were observed for IDPs

corresponding to brain volume/brain area measures and the lowest

ICCs were observed for IDPs corresponding to task measures. This

pattern of results is not particularly surprising since macro-scale struc-

tural properties like regional volume are expected to be relatively sta-

ble over time, especially when considering relative between-subject

correlations. Macro-scale functional properties like task activation

magnitudes or network connectivity patterns exhibit higher variability

over time due to influences of factors such as the level of task

engagement (during task), cognitive state (during rest), and physiologi-

cal state (e.g., hungry vs. sated, sleepy vs. alert), and therefore are

expected to have somewhat reduced test–retest stability.

Analyses performed for sub-groups of patients that did (n = 288)

versus did not (n = 336) exhibit changes in mental health between

time-points as determined by the difference between RDS-4 mea-

sures obtained at each time point yielded highly similar results, as did

those obtained after regressing out the change in RDS-4 score (See

Supplementary Material Section S5 and Figure S8). Overall, these

results suggest that the test–retest reliability of the IDPs is largely

independent of mental health change as indicated by the RDS-4.

4 | DISCUSSION

In the present study, we aimed to tabulate mental health question-

naires available in the UKB and investigate their neural correlates. We

summarize five different UKB measures of mental health: PHQ-9,

GAD-7, RDS-4, N-12, and probable depression status. Our results

show that all measures were moderately correlated with one another

(Figure 3). CCA analyses to identify multivariate associations between

these mental health measures and IDPs indicated a significant CCA

mode of covariation which linked brain IDPs to mental health scores

(Figure 5). The multivariate CCA analysis indicated a significant corre-

lation between mental health and imaging that was largely reproduc-

ible in the independent confirmatory sample. All mental health

measures contributed to the CCA result indicating a “trait-like” multi-

variate brain–mental health association. In a separate test of univari-

ate effect sizes, modalities with the strongest modality-mean effect

sizes included amplitude and edge connectivity of resting-state net-

works, but univariate effect sizes were generally very low (Figure 6).

All IDPs showed moderate to high test–retest reliability, with IDPs of

brain structure showing higher reliability than IDPs of brain function

(Figure 7). Together, these findings provide the foundation for future

biomarkers research into mental health using the UKB.

We highlighted a difference in acquisition timing of mental health

questionnaires in the UKB study relative to neuroimaging data

acquisition. Two well-validated measures of mental health (GAD-7

and PHQ-9) were obtained as part of the online questionnaire, which

is acquired independently of scan days such that they were obtained

742 days apart (median across exploratory subjects) from scan 1 (range

�1,185 to +964 days). Because of this time discrepancy (which is

highly inconsistent across subjects), the PHQ-9 (which tests recent

depressive symptoms over a 2-week period) is not well-suited as a

state depression measure for UKB neuroimaging research despite its

validity for lifetime depression (Cannon et al., 2007), and its sensitivity

to depression in older populations (Levis, Benedetti, Thombs, &

DEPRESsion Screening Data (DEPRESSD) Collaboration, 2019).

Therefore, we introduced the RDS-4 (obtained on each day of scan-

ning) as a new UKB measure of recently experienced depressive

symptoms. We propose the RDS-4 as a more appropriate measure for

any UKB neuroimaging research that aims to study acute (state)

depression severity or track symptom fluctuations over time. Our

results from the independent Mechanical Turk study show that the

correlation between the RDS-4 and the PHQ-9 is high when obtained

concurrently (0.9, Table 4), whereas a lower “trait-level” correlation

between RDS-4 and PHQ-9 is observed in the UKB data (0.6;

Figure 3a) due to the gap in acquisition times (Figure S1). Further-

more, RDS-4 has high internal consistency and its scores map closely

onto established measures of depression (Figure 4 and Table 4)—

further confirming its validity. The RDS-4 questions cover four differ-

ent depression domains (mood, disinterest, restlessness, and tired-

ness) that are also considered in other measures such as the Hamilton

and Montgomery–Åsberg scales (Hamilton, 1967; Montgomery &

Asberg, 1979). Hence, by asking questions in different domains, the

RDS-4 inventory reflects overall depression severity relatively well,

despite the comparatively small number of items. The Neuroticism-12

index—also obtained on each day of scanning—is a personality trait

(Eysenck & Eysenck, 1975) that is strongly related to an increased risk

in depression (Hirschfeld et al., 1983; Shaw & Hare, 1969). N-12 items

assess generic traits as opposed to recently experienced clinical symp-

toms (RDS-4 and PHQ-9). Our results confirm that N-12 is more sta-

ble over time compared with RDS-4 and PHQ-9 as assessed by the

2-year correlation. We, therefore, suggest that N-12 can be used as a

measure of trait-level susceptibility to depression in UKB neuroimag-

ing research.

In terms of neuroimaging correlates of mental health, our findings

show that multivariate associations explain more variance in mental

health effects than univariate associations, which is supported by pre-

vious work (Marek et al., 2020). It should be noted that our estimated

effect sizes are derived from a large sample (N > 2,000) and are there-

fore expected to capture true effect sizes that are uninfluenced by

sampling variability (Marek et al., 2020). The literature to date is domi-

nated by underpowered studies which, by design, only report high

effect sizes because the significance threshold is itself high due to lim-

ited power. We have to adjust our expectations to value realistic

effect sizes from well-powered samples, which may be lower but,

importantly, reproducible. The observed increase in explained vari-

ance when using multivariate methods is consistent with the proposal

of complex macroscopic patterns of psychopathology in mental health
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patients (Williams, 2016; Wise et al., 2017). Future biomarker

research will therefore need to focus on multivariate techniques such

as CCA, connectome fingerprinting (Finn et al., 2015), topological net-

work properties (Zhu et al., 2017), or machine learning (Dinga

et al., 2018).

One reason why multivariate methods may have higher effect

sizes than univariate methods could be due to the relatively low

signal-to-noise ratio and high measurement noise of individual univari-

ate IDPs and the effective averaging that occurs in multivariate com-

binations of IDPs and during the dimensionality reduction before

CCA, which reduces noise. For example, previous work showed sub-

stantial increases in heritability when combining connectivity IDPs

with independent component analysis compared with univariate IDPs

(Elliott et al., 2018). Given the low SNR of individual IDPs and the risk

of overfitting in multivariate methods, robust cross-validation

(Poldrack, Huckins, & Varoquaux, 2020) and independent replication

of findings (in a split-half group and/or in a fully independently

acquired dataset) are essential requirements for future biomarker

research (Dinga et al., 2019; Dinga, Schmaal, & Marquand, 2020).

A second potential reason for limited effect sizes (even with the

use of multivariate methods like CCA) is between-subject heterogene-

ity. One type of heterogeneity is diversity in symptoms, such that two

patients with depression may present with largely nonoverlapping

symptom profiles (Drysdale et al., 2017; Feczko et al., 2019; Feczko &

Fair, 2020; Kaczkurkin et al., 2020). Another type of heterogeneity is

diversity in psychophysiological disease mechanisms. Here, it is possi-

ble that the same symptom may be caused by a number of different

patterns of brain changes (Feczko & Fair, 2020), which we refer to as

“many-to-one mechanistic mapping”. Notably, both types of hetero-

geneity are potentially more prominent in large-scale population stud-

ies such as the UKB compared with smaller studies. This is because

studies with smaller samples often implement stricter exclusion

criteria in relation to comorbidities and medication to control for

known sources of heterogeneity. Reducing the exclusion criteria in

the UKB is likely advantageous for mental health research because

the UKB and other large-scale studies provide a more accurate repre-

sentation of “real-life” mental health as it occurs across the popula-

tion. This makes the findings more likely to be generalizable.

However, gaining a better understanding of both symptom heteroge-

neity and many-to-one mechanistic heterogeneity is critically impor-

tant for the effective clinical translation of mental health biomarkers.

Computational methods are available to account for heterogeneity,

such as subtyping analyses to reveal any distinct sub-groups (Drysdale

et al., 2017; Kaczkurkin et al., 2020) and normative modeling analysis

to compare each individual against the normative range (Marquand,

Rezek, Buitelaar, & Beckmann, 2016). These models of heterogeneity

benefit from the large sample size available in the UKB which enables

stringent cross-validation.

In summary, this article provides a guide for future neuroimaging

biomarker research into effect-based mental health in the UKB. We

recommend using RDS-4 for imaging-based research into state

depression (i.e., currently experienced symptoms) and N-12 for

imaging-based research into personality traits associated with

depression (Lahey, 2009). Our results regarding the brain correlates of

mental health show low effect sizes of individual IDPs, but higher

effect sizes and replicability of multivariate associations and relatively

high test–retest reliability. Therefore, we recommend the use of

approaches that capture multivariate patterns and parse patient het-

erogeneity in combination with stringent out-of-sample replication to

avoid overfitting.
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